Wacs Programming Guide

Tenth Edition
for WACS 0.9.2

B "Beaky" King
Publication date Tuesday 10th May 2016

Wacs Programming Guide
by B "Beaky" King

for WACS0.9.2

Publication date Tuesday 10th May 2016
Copyright © 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 B King

Abstract

WACS is atool for building Adult Web Sites; it is equally suitable for managing a private collection or building
a commercial web site. It has many best of breed features including dynamic filtering, model catalogs, automatic
download and powerful search engine. It comeswith apowerful API (application programming interface) implemented
in both Perl and PHP5 languages to allow web developers to leverage it's facilities from their own programs.

This book describes the application programming interface provided by WACS, and how to utilise it from perl and
Php languages. It provides an extensive introductory tutorial with a large number of worked example programs as
well as acomplete API reference manual. Additionally it provides a schema reference for the WACS database tables
as understanding the fields available to you is central to writing programs that utilitise it. The intended audience is
web developers and WACS site managers who wish to tailor an existing WACS installation to meet their precise
requirements; people merely wishing to use or manage an existing WACS installation may well find the default
configurations provided suffice.

The WACS source code and other documentation and support tools can all be found at the WACS website at
Sourceforge [http://wacsip.sourceforge.net/] and on the WACS page at Launchpad.net [https://launchpad.net/wacs/
]. The WACS demonstration site can be found at PinkMetallic.com [http://www.pinkmetallic.com/] - the site will
initially be free but a charge maybe applied later to help fund additional content. Commercial add-ons and support
options can be purchased from Bevtec Communications Ltd, see their website at Bevtec Communications [http://
www.bevteccom.co.uk/].

Thiswork islicensed under the Creative Commons Attribution License. To view a copy of thislicense, visit http://creativecommons.org/licenses/
by/2.0/ or send aletter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://wacsip.sourceforge.net/
http://wacsip.sourceforge.net/
https://launchpad.net/wacs/
https://launchpad.net/wacs/
http://www.pinkmetallic.com/
http://www.pinkmetallic.com/
http://www.bevteccom.co.uk/
http://www.bevteccom.co.uk/
http://www.bevteccom.co.uk/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

Table of Contents

[. WACS APl Programming TULOI@leieeueieiiiiie ettt e e 1
O | oo (01 o o RSP P PP TPPPTT 4
OVEIVIBIW .ttt ettt e e et e e et et e e e e ab e e e e ra s 4
ADOUL ThIS BOOK ...t e e 4

ADOUL The EXAMPIES ...t 4

2. BaSICS. GELtING SEAMEHevniieiii ettt e 5
OULIINE ettt ettt ettt et a e enaas 5

A FIrst WACS PrOQramceeeii ettt et e e e e e 5
MOTUIES: TMPOITING «.evveeeiite et e et e e e e e e eees 5
Configuration AN SECUNLYvuuiiiiiiieeeii e 6

Initialising Database CONNECLIONcccuuuiiiiiii e 6

Fetching SOME RECOSuiiiiiiiee et 8

Showing The RESUITSceuuneiiii e 9

Finishing Off ...oeee e 10

PULtiNg Tt Al TOGEINEY ... 11
RUNNING MYSIMPIE ..ot 13

Reviewing The First Programcoouuiioiiiiiieiii e 14

3. Using More Database FIElASc.uuiiiiiiiiici e 15
AdAiNg MOGE TCONS ...t e 15
More Model INFOrMELIONooiiiiieii e 16
USING HTML taDIES ..o 17

Adding The Model DELaISuuiiiiiiicce e 19

AddiNg Other 1CONS ... 21
IMProving Error REPOMINGueieeitieiiiiii et e e e e e e 23

4. Set DiSplay ROULINEScieeiiieeeei ettt ettt e e et e e e e e enaans 26
ADOUL SEL DISPIAY v 26

Sets: The BaSIC BONESuiiiiiiiiiecee e 26

AdAING TCONS ...t 29

Making The Text More Readableccoiiiiiiiiiiii e 30
Connecting SetS AN MOTEISoouuiiiii e 32
Understanding The Data ArchiteCtureveeviiiiieiiiii e 32

Using Relationships With ASSOCcoouvuiiiiiiiiciei e 32

AN EXAMPIE USING ASSOC ...eeiiiieieiiiie ettt sttt eenanns 33

5. Making The Right SEIECHIONSiiiiiiiiii e 37
Why DiSCUSS SEIECHIONS? ...ttt e e eees 37
Avoiding Placeholder MOEISiiiiiiic e 37
Avoiding Duplicate and AIErNaLiVe SELSccovuuiiiiiiiii e 38
Understanding Link REIEHIONSiiiiiiiiiiiii e 38

[ustrating How Link Relations WOrKccouuiiiiiiiiiiiiii e 38

Coding For Link REIGIONScoouuiiiiiiiiiec e 40

ADOUL Preference EXCIUSIONScocuuuiiiiiiiee ettt 41
Fetching The Preference Exclusions INformationccoeeevvviieiiiiiiieeiiiinneees 41

Using The Preference EXCIUSIONSooiiiiiiiiiii e 42

6. The User Interface TOOIKITooeiiiiiiii e 43
INErOdUCING WECSUI ...t 43
INncluding WacsSUI SUPPOITccuvuiiiiiiie et 43

WaCSUL: DESCITDEHES ... 43

The what shedoes fUNCLIONuiviiiiiii e 44

The addkeyi CONS TUNCHIONcoovuiiiiiii e 45

The Link Familyoooni e 45

i conl i nk: WacsUl's Most Important FUNCEIONcccuiiiiiiiiiniiiiieecein, 46

Wacs Programming Guide

Using the t hurmbl i Nk fUNCLION ..o 46
Usingthecontent | i nk functioncccoiiiiiiiiii e, 47

WaCSUL: Other FUNCLIONSiiiiiiiieeci e e s 48
100 Tox 1= o] S PT 48

7. WECSPHP: THE SKINS ..oevuiiiiii et e e et e eeeaaneeees 49
INtroduction TO PHP SKINSuuiiiiiiiiciii e e s 49
Wacs-PHP: The SIMPIE SKiNoveiiii e 49

Styling WaCsS-PHP SKINScouuiiiiiciii e e e e 50

WACS 8N WED 2.0 ..o et e et e e et e e e e s 50

1. WACS API Programming REFEIENCEuuiiiiiiiiii i e e 52
8. WACS APL: COre MOUUIEuuiieiiii et e e et e eeeat e eees 54
Core ModUIE: SUMMAIYiii e e e e e e e e e aaaaes 54

Core MOUIE: REFEIENCEoeveiieeie e 54

9. WACS APIL: User Interface MOAUIEovvvviiiiiii e 82
User Interface ModulE: SUMMEIYcouuiiiiiiii e e e e aens 82

User Interface Module: REFErENCEuiiiiiiiiiiii e 82

10. WACS API; Standard Components MOodUIEcouuiiiiiiiiiiieiie e 104
Standard Components Modul€: SUMMAIYccccuieiiiiiiiiiieiir e 104
Standard Components Module: REFEreNCecooviviiiiiii e, 104

11. WACS APIL: Identification MOAUIEcoovvuiiiiiiii e 129
Identification Modul€: SUMMAIYccouiiiiiiiiiie e e 129
Identification Module: REFEIENCEccovvniiiiiii e 130

12. WACS APL: Downloading ModuIecooviiiiii e e e 135
Downloading Modul€: SUMMAIYcccuuiiiiiiiiiii e 135

[11. WACS Datahase SChEMavuieeiii e 136
13, SChema REFEIENCE: SEIS ...ttt 138
SEtS: SChEMA SQL ...ovviiii e e 138

SetS: DEfINEd VAIUBS ... oo 139

14. SChema REFEIENCE: ASSOC ... iiiiiiiee ittt e et s e e e et e e e eetanaeaeae 145
ASSOC: SCHEMA SOL ...iiiiiiiiii e e 145
ASSOC: DEFfINEA VAIUESuiiiiiiii e 145

15. Schema ReferenCe: 1dmap ... cooue i 146
[dMaP: SChEMa SQLoveiiiii e e e e 146
[dMap: DEfINEd VAIUES ... covniii e e 146

16. Schema RefErence: MOOEISvviveiiiii e 148
Models: SCheMa SQL ... cvvniiiiei e e 148
Models: DEfINEA VAIUESooeiiiiieeiii e 149

17. Schema Reference; DOWNIOAHcoveuiiiiiiiii e 153
Download: SChemMa SQLiiiiiiic e e 153
Download: DefiNed VAIUEScoeuuiiiiiiiiiieei et 153

18. Schema Reference: Photographerocvvuiiiiii i 155
Photographer: SChema SQLuiiiiiiii e e e 155
Photographer: Defined ValUESccuuiiiiiiiiii e e 155

19. SChemMa REFEIENCE: TAG ..ovvuiiiiieii e e e e e e e e e e e e e et e eean s 158
Tag: SChEMa SQL ...ovniiii e e 158

Tag: DEfINEA VAIUES .. .couiiiicie et e e 158

20. Schema ReEfEreNCe: VENAOTcovvuviiieiii e 159
Vendor: SChemMa SOLciii i 159
Vendor: DEfiNEd VAIUESiiiiiiii i 160

21. Schema REFErENCE: COMMuuuiiiiii et e e e e e e e e 161
ConN; SChEMA SQL ..ovviiiiiie e e e e aaa 161
Conn: DEfINEA VAIUBS ...t 161

22. Schema Reference: KeYWOrdoiiiiiiiiiiiii e 162
Keyword: SChemMa SQLiiveiiiii e e e e e et e e e e e aeas 162

Wacs Programming Guide

Keyword: DefiNed VAUESoiiiiiiii e e 162
23. SChemMa REFErENCE WACSUSEYivviiiiieiieiieeiee e e et et e et e e e e e e et e et e eaeeanes 163
USEr: SChEMa SQL ...vvniiiii i e e e e e e e e e 163
USEr: DEFINEO VAIUBS ...ttt 164
24, Schema ReEfEreNCE: AIIDiveiii e 166
ALLrib: SChEMAa SQL ...ovviiii e 166
ALriD: DEFINED VAIUBS ..o 166
25. SChemMa REFErENCE NOLESviiiriii i e e e e eeens 168
N0 =SS o 4T 0= T | 168
NOLES: DEFINEA VAIUBS . .oviiviiici e 168
... 169

List of Tables

7.1. SImple SKin: COMPONENES ...ttt ettt et e et e et ettt e e e rb e e e ra s 49
2. The K&y WACS MOUUIES ...ttt e e 52
8.1. Function SUmMmary: Core MOGUIEccouuuuiiiiiiii e 54
9.1. Function Summary: User Interface ModUIecoouuiiiiiiiiiii e 82
10.1. Function Summary: Standard Components ModUuleuiiiiiiiieiiii e 104
11.1. Function Summary: ldentification ModUuleiviiiiiiiiiii e 129
12.1. Function Summary: Downloading Modulecoouiiiiiiiii e 135
13.1. stype: Type of Set: defined VAIUBScoouiiiiiiiii e 139
13.2. sstatus: Status of Set: defined VBIUEScveveiiiiiii e 140
13.3. sauto: Automatic Update of Set Allowed?: defined valuescoovviiiiiiiiiiiiinec, 140
13.4. srating: Overall Rating For The Set: defined ValUEScuiiiiiiiiiiiii e, 140
13.5. stechqual: Technical Quality Rating For The Set: defined valuesoccoveiiiiiiiiinnn, 140
13.6. svariety: Unusualness Rating For The Set: defined Valuescoovviiiiiiiiiiiiieciiieeceen 141
13.7. sformat: Format of the File(s) In The Set: defined values ..o 141
13.8. sidlogo: Presence of Burnt-in Logo: defined Valuesoovvvviiiiiiiiiiiiiccieceieeee 141
13.9. sinter: Progressive or Interlaced Video SIrUCIUIEociiiieiiiiiiiiieieei e 142
13.10. serrors: Presence of Known Errors: defined Valuesooviiiviiiiiiiiiiieiecc e 142
13.11. scatflag: Generalised type of the set: defined ValueScoovviiiiiiiiiiiii e, 142
13.12. srank: role and position of set: defined ValUEScooviiiiiiiiiiii e 142
13.13. dlocation: generalised description of locations: recommended valuesccovvvevieennnnens 143
13.14. sattire: generalised description of model's clothing: recommended values 143
13.15. suscattr: how to generate the 18 USC 2257 declaration: defined valuesccceeeeenneeee. 144
14.1. astatus: association status: defined VAIUBSooiiiiiiiiiiiiiieee e 145
15.1. istatus: idmap status: defined VAIUESooiieiiiiiii e 146
15.2. iactive: model activity status as this identity: defined valuescccoooeeviiiiiiiii, 146
15.3. isite: Some recommended site abbrievations; recommended Valuesccoevviiiiiiiiieeees 147
16.1. mstatus: model record status: defined VAUBSoviiiiiiiiiiiii e 149
16.2. mrating: model rating: defined VBIUESuuiiiiiiiii e 149
16.3. mpussy: model's normal pubic hair style: defined valuescooviiiiiiiiiii i, 150
16.4. mflag: special marking flag for models: defined valuesocovviiiiiiiiiiii e 150
16.5. model activites flags: defined VAIUBSooiiiiiiiiiiiii e 150
16.6. mcstatus: accuracy of home country field: defined valuescoocviiiiiiiiiinicee, 151
16.7. mrace: race of the model: defined ValUEScooiiiiiiiiii e 151
16.8. mbuild: body type of the model: defined VaIUESccooviiiiiiiiiii e 151
16.9. mlabia: about the model's labia: defined ValUEScoviiiiiiiiiiii e 151
16.10. mstarsign: The models astrological Star SIgNceeveeeeieiiie e 152
16.11. vital StatiStiCS: MEBNINGSvuueieiei ettt ettt e et e e e eaa s 152
17.1. dstatus: download status: defined VAIUEScoovuiiiiiiiiiieeei e 153
17.2. dtype: download set type: defined VAIUEScoovviiiiiiii i 154
17.3. dsetflag: Suggested value for scatflag based on parsing resultocoeiiieiiiiiiiiiiiinneeees 154
18.1. pgender: gender of the photographer: defined valuesooovviiiiiiiiiiiiii e 155
18.2. pregion: geographical location of the photographer: defined valuescccoevvviiieine. 156
18.3. prating: overal rating of photographer: defined valuescoooeiiiiiiiiiiiii 156
18.4. phardness: rating of how explicit this photographer can be: defined values.......................... 156
18.5. photographer activites covered flags: defined ValUEScciviiiiiiiiiiiii s 157
18.6. photographer technologies used flags: defined valuescoouiieiiiiiiiiiiii 157
19.1. tstatus: tag entry status: defined VAIUEScoouvuiiiiiiiiciii e 158
19.2. tflag: tag content type status: defined VAIUEScooiiiiiiiieiiii e 158
20.1. veurrent: vendor existance status: defined ValUESooviiiiiiiiiiiiiii e 160
20.2. vshow: vendor index inclusion status: defined ValUEScoovvviiieiiiiiiiec e 160
20.3. vmdiruse et al: vendor URL auto-usuability status: defined valuescooeeeeiiviineeiinnnnn. 160

Vi

Wacs Programming Guide

21.1.
21.2.
22.1.
23.1.
23.2.
23.3.
24.1.
25.1.

cflag: connection type: defined VAIUESccuiiiiiiiiii e 161
cstatus: connection entry status: defined ValUBSc.eeiiiiiiiiii i 161
kflag: active entry status: defined ValUEScooviiiiiiiiiii e 162
ustatus: User Account Status: defined VAIUBSuvviiiiiiiiiiiiiiicc e 164
utype: User Type: defined VAIUEScouuiiiici e 164
uclass: User Class: defined VAIUEScuuiiiiiiiiicii e e 164
atsource: attribute source: defined VAIUESoovviiiiieiii e 167
ntype: Notes type: defiNed VAIUEScouiiiiiiiii e 168

Vii

List of Examples

2.1,
2.2,
2.3.
24,
2.5.
2.6.
2.7.
3.1
3.2
3.3.
3.4.
3.5.
3.6.
4.1.
4.2,
4.3.
4.4,
4.5.
4.6.
6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.

WACS MOQUIE TMPOIT <.ttt ettt e et e e e e e na s 5
CONFIG AN SECUILY ... eeeeti ettt ettt e et e e et e e et e e et e e e e na s 6
Database Connection INitialiSatioNnuuuiiiiiiiiiiiii e 6
DalANESE QUETY ...ttt ettt ettt ettt ettt et e et e et e e et e b e e e aaees 8
OULPULING THE LISt ...ttt e e r et e e e 9
Php: Complete SIMPIE PrOgramcouuu it e e e eeeans 11
Perl: Complete SIMPle Prograimoooeuiiii et 12
Modified Output LOOp With 1CON COUEuuiiiiiiiieiei e 15
Modified SQL command for more Model INfOooiiuiiiiiii e, 16
New version of the 100p USING taDIESiiiiiii e 17
Adding Model TNfOrMELTONcooeieiiiei et et e e e 19
Adding A REIENG TCOMN ..ottt et e e eaaaas 22
Calling dber r or for better error rePOMINGccuvueeieeri e 24
The BasiC SEtDiSP PrOgIaimc.uuiiiiiiiieeeeiie ettt et e et e et e e et e e enae e eeenes 26
AdAING A SEE TCON ..t 29
Making Camel-Style Text Readablecooviiiiiiii e 31
MOIfied 1CON CEIl ... i e 33
OEtMOEl SUDIOULINE ...t et e e e e et e e e s 33
Calling The get mDAel FUNCHIONuuiiiii e e 35
WECSUI INITTAITSALON ...oeeveeieiii et e e 43
USINg WaCSUI: AESCITDENENiiii e e 43
Using WacsUI: WhatShEdOBSuiiiiiiiei e 44
USING AQAKEYICONS ...ttt ettt et e e e e e e 45
Using the i conl i NK FUNCLIONoooiiiiiii e 46
Using the t humbl i NK fUNCHIONiii e 47
Using the cont ent | i NK fUNCLIONcoouuiiiiiii e 47

viii

Part I. WACS API Programming Tutorial

This part of the WACS Programming Guide is designed to introduce you to programming using the WACS API -
examples will be given in both Perl and PHP5 dialects so you can choose to work in either language.

Chapter 1, Introduction

Chapter 2, Basics. Getting Sarted
Chapter 3, Using More Database Fields
Chapter 4, Set Display Routines
Chapter 5, Making The Right Selections
Chapter 6, The User Interface Toolkit
Chapter 7, Wacs-PHP: The ins

Table of Contents

O | gL oo (8 1o o R PO PRSPPI 4
OVEIVIBIV .ttt ettt e e et e e e et e e e et b e e et ab e e e e b 4
ADOUL THIS BOOK ...t et eees 4

ADOUL The EXAMPIES ...t 4

2. BESICS. GELLING SEAMEHeeiieit ettt e e et e et e e e nb e eee 5
(O 1111 TP PP TPPPPTI 5

A FIrSt WACS PrOGIaIM ...ttt ettt ettt e e e et e et e e e aa s 5
MOTUIES: TMPOITING «.evteeeeeit ettt et et e et e e e e nt e e eenan e eeees 5
Configuration AN SECUNLYceuuuiiiiiiieiieii ettt e e eeaens 6

Initialising Database CONNECLIONccuuuiiiiiieeiii et 6

FEtChing SOME RECOISuiiiiiii et e 8

ShoWwing The RESUITSeuiiiii e 9

FiNiShing OFf ..o e 10

PULEING Tt Al TOGEINEY ...t 11
RUNNING MYSIMPIE ... 13

Reviewing The First Programcoouuioiiiiiii e 14

3. Using More Database FIEISuiiiiiiiiei e 15
AdAiNg MOGEL TCONS ...t e e eees 15
More Model INFOIMELIONooiiie e 16
USING HTML t80IES ...t e 17

Adding The Model DELalSoeiiiiiieiii e 19

AdAiNg OthEr 1CONSuiiiiii et 21
IMProving Error REPOMINGueieeiieiiiii ettt et et e e e eeaanns 23

4. Set DiSPlay ROULINEScceetiieiiii ettt ettt et et e e e e enanns 26
ADOUL SEL DISPIAY ...ttt 26

SEtS: The BASIC BONESuniiiiii ettt e 26

AdAING TCONS ...t et e 29

Making The Text More Readablecoiiiiiiiiiiii e 30
Connecting SetS AN MOUEIScouuuiiiii e 32
Understanding The Data ArChiteCtureooveiiiiiiiiiee e 32

Using Relationships With ASSOCcccuuiiiiiiiieiiii e 32

AN EXBMPIE USING ASSOC ...oevtiieieii ettt ettt e et e e e s 33

5. Making The RIgNt SEIECHIONSciieiiiiiiii e 37
Why DiSCUSS SEIECHIONS?ieiiiiieeeiie ettt et e e e e e e e enees 37
Avoiding Placeholder MOGEISoiiiiiii e 37
Avoiding Duplicate and AIENELIVE SELSuuiiiiiiiei e 38
Understanding Link REIBHONSuiiiiiiiiiii e 38

[ustrating How Link Relations WOTKc.uuiiiiiiiiiiiii e 38

Coding FOr Link REIGHTONSccooutiieiiiiiie e 40

ADOUL Preferente EXCIUSIONScccuuei ittt e e e e 41
Fetching The Preference Exclusions INfOrmationceuiveieiiinieiiiiinieeeiieeeennnn 41

Using The Preference EXCIUSIONScooouuiiiiiiiiic e 42

6. The User INterface TOOIKITcoieiiiiii e e 43
INErOdUCING WECSUI ...ttt eeaeas 43
INCluding WacSUI SUPPOITccouuueiiiiieeeiis ettt ettt e e e e e e e e 43

WECSUL: DESCITDEHES ...t 43

The what Shed0es fUNCHIONuuiiiii e 44

The addkeyi CONS FUNCHIONcoouuiiiiii e 45

The Link Family ..o et 45

i conl i nk: WacsUI's Most Important FUNCHIONcoouviiiiiiiiniciiccc e 46

Using the t humbl i Nk fUNCHIONooiiii e 46

WACS API Programming Tutorial

Usingthecontent | i Nk fUNCLioNoooiiiiiiii e 47

WaCSUL: Other FUNCLIONSu.iiiiiiiiiee ettt e et e e e e et e aaaeens 48
(00 aTe: 11T TR 48

7. WACS PHP: The SKiNS ..uuiiiiiiiii et e e e e e e e e e e e ees 49
INtroduction TO PHP SKINScvuiiiiiiie et e e e e eaes 49
Wacs-PHP: The SIMPIE SKIN ...couniic e e e e e 49

Styling WaCsS-PHP SKINScoviiiiiici e e e e e 50

WAGCS AN WED 2.0 1.eeiieci e e e e e e e e st e e e e e eaaees 50

Chapter 1. Introduction

Overview

Welcome to WACS, Web-based Adult Content Server, a free software package for the management of
material of an"Adult Nature" (or basically whatever euphermism for porn you prefer). It isweb-based and
can be used for the management of an existing collection, as a download manager, or as aback-end system
for running acommercial adult web site. It isdramatically different from most other image gallery systems
in that it understands photo sets and video clips as basic concepts, instead of single photographs. It also
includes far more specialised tagging, source, relationship and attribute marking concepts than other more
generalised systems. WACS ahilitiesin the areas of searching and dynamic filtering are really industry-
leading in their power and flexibility.

About This Book

This electronic book, the WACS Programming Guide, is designed to act both as an introduction to
programming with the WACS API in either perl or PHP, and as a reference volume for both the AP
itself and the database schema. This book assumes you already have a basic knowledge of programming
in your choosen language (PHP5 or perl5) and have some understanding of databases and in particular
SQL (Structure Query Language). Some familiarity with WACS at a user level would also be a distinct
advantage, and I'd strongly recommend working through the companion user guide first - who knows it
might give you some ideas about neat extra features you can add to your own site. All documentation for
WACS is available both within the distribution and from the WACS Web Site at Sourceforge.net [http://
wacsi p.sourceforge.net/].

Itisimportant to stress that ALL of the collection management tools are implemented in Perl and the PHP
interfaceis an optional addition to, not an alternative to, the core Wacs system which is perl based. Given
the relative youth of the WACS system, php5 has been selected for the implementation to save future
porting effortsasit is expected that php5 or later will be the minimum common standard by the time Wacs
reaches 1.0. Thereis no intention to support older dialects of php at this point.

Asthe WACS software package is Open Source, we're always looking for contributions; if you create a
site design (or prototype for one) which you don't end up using, maybe you would consider donating it
to the repository of sample WACS Skins. We can aways substitute our own artwork into already written
web application code.

About The Examples

For copyright/licensing reasons, the example images feature sets from photoshoots by the main devel oper
of WACS (Beaky) and afriend of his. These setsareavailablefor download from the WA CS demonstration
site at PinkMetallic.com [http://www.pinkmetallic.com/] - CAUTION: contains adult material! Accessto
this site is currently free but we may have to levy a small charge in the future if refferal and donations
don't reach the hoped-for amount.

http://wacsip.sourceforge.net/
http://wacsip.sourceforge.net/
http://wacsip.sourceforge.net/
http://www.pinkmetallic.com/
http://www.pinkmetallic.com/

Chapter 2. Basics: Getting Started

Outline

In this chapter we're going to talk about the basic first steps in making use of the WACS API from your
own programs. We're going to assumethat you've got aWACS server you can use up and running; that you
know where things are on it and that you have appropriate write access to the web document tree (if you're
working in PHP) or the cgi-bin directory (if you're working in Perl). Hopefully you'll have both some
models and afew image sets known in the WACS system to work with. For these first code examples, you
could merely load the sample model profiles we've provided in the sanpl es directory of the WACS
distribution.

While the finished code of the sample programs featured here is available in the samples directory of the
WACS Core distribution (for the Perl verion) or the WACS-php distribution (for the PHP5 version), you
may wish to type it in as you go aong as an aid to learning how to use the interface. If you do, we'd
recommend calling this file nysi npl e for perl, or mysi npl e. php for PHP. For consistency, we're
going to put the PHP dialect first and then the Perl dialect in each of the examples.

The basic structure of your first WACS application will consist of five steps; these are:
1. import the WACS APl modules

2. read configuration and check access rights

3. initialise the database connection

4. run an appropriate database query

5. retrieve records and display them

A First WACS Program

Modules: Importing

The very first step isto import the WACS API modules into your program file along with those standard
modul es needed to access the database. These files should be in the right location aready and should just
be found without any additional specification of where they are.

Example 2.1. WACS M odule Import
requi re_once "wacs. php";

requi re_once "DB. php";

$wacs = new WAcs;

The same code segment implemented in perl looks like:

use Wacs;
use DBI;

Basics: Getting Started

Note

The PHP interface requires an Object Handle to use when accessing the WACS module
which we're smply caling $wacs. Perl doesn't need such a construct - there is simply the
oneinstance.

Configuration And Security

The second step isto read the standard WACS configuration file to find out where everything is, and then
check that this user is allowed to access the WACS system. Thisis a two step process, and the reading
of the configuration file must be done first; otherwise WACS doesn't know where to look for the security
filesit needsto determine whether this user should be given access or not.

Example 2.2. Config and Security

/1 read the Wacs configuration files
$wacs- >read_conf ();

/1 check the auth(entication and authorisation) of this user
$wacs- >check_aut h($_SERVER ' REMOTE_ADDR], 1);

and here is the same thing again in the perl dialect:

read the Wacs configuration files
read_conf;

check the auth(entication and authorisation) of this user
check_aut h($ENV{" REMOTE_ADDR'}, 1);

Initialising Database Connection

Thethird stepistoinitialisethe database connection. Since some databasesrequire an environment variable
to determine where their configuration files have been stored, this needs to be set first. Wacs provides
for this and this code will create that environment variable, if needed, and then proceed to establish the
database connection itself.

Example 2.3. Database Connection Initialisation

/1 database initialisation

/1 - establish environnment variable

$dbi env = $wacs->conf _get _attr("dat abase", "dbi envvar");
if(! enpty($dbienv))

{

put env($dbi env. "=". $wacs- >conf _get attr("dat abase", "dbi envval ue"));

}

// - connect to the database

Basics: Getting Started

$dbhandl e= DB: : connect ($wacs->conf_get _attr("database", "phpdbconnect"));
i f(DB::iserror($dbhandl e))

{

}
$dbhandl e- >set Fet chMbde(DB_FETCHVODE ORDERED) ;

die("Can't connect to database\nReason:". $dbhandl e- >get Message. "\ n");

and here's how we do it in perl:

database initialisation

- establish environnent variable

$dbi env = conf _get _attr("database", "dbi envvar");
if($dbienv ne "")

{
}

- connect to the database
$dbhandl e=DBI - >connect (conf_get_attr("database", "dbi connect"),
conf _get attr("database", "dbuser"),
conf _get attr("database", "dbpass")) ||
die("Can't connect to database\nReason given was $DBl::errstr\n");

$ENV{ $dbi env} = conf_get _attr("database", "dbi envval ue");

OK, let'sjust study this code for amoment. It first calls the WACS API function conf_get_attr with the
section parameter of database as it wants database related configuration information, and an argument
of dbienwar. The WACS API function conf_get_attr is short for configuration get attribute and returns
the value of the configuration file parameter of that name or it's default value. The dbi envvar means
databaseinterface environment variable. A typical valuefor thismight be something like ORACLE_HOVE
which is the environment variable that Oracle 10g and 11i requires to be set in order to find it's current
configuration.

The next line of the code checks to see if we got back an actual variable name (eg ORACLE_HQOVE) or an
empty string (ie nothing). If we were given a valid variable name, then we're going to need to set it the
value it should be, which again we can get from the configuration file, this time called dbi envval ue
which isshort for database interface environment value (as distinct from the variable name we just |ooked
up). A likely valuefor thismight be/ usr /| ocal / or acl e. Obvioudly if we're given no variable name
to set, there's no point looking for avaluefor it! Conversely we are assuming that having bothered to name
the variable in the configuration file, also put in avalid value for it - this code could break if the variable
name is specified but not it's value.

The second section of these code segmentsis to do with the establishment of a connection to the database
and is alittle different between the two versions. Both systems use a handle for the database connection,
which we call $dbhandl e - imaginative name huh? In both cases, the respective database APIs provide
a connect function which takes an argument of how to connect to the database. The Php version takes
asingle argument, which is stored in our configuration files as phpdbconnect and includes the whole
username, password and database specification in a single lump. The Perl version asks for three: the
database specification, the username and finally the password. The configuration file knows these as
dbi connect , dbuser and dbpass respectively.

Thefinal bit copes with putting out some kind of error message, at least showing the point of failure, if we
are unabl e to establish a connection to the database. The methods are very dlightly different, but the effect
is very much the same between the two versions. We then just tell the PHP DB interface how we wish it
to organise the returned data; the perl DBI default is pre-determined and is what we want.

Basics: Getting Started

Tip
Note that you might wish to have completed the output of the HTML header section and

started the body by this point so that should the database connection fail, the error message
will bevisible.

Fetching Some Records

The next step in the process is to use the database connection we've established to actually make arequest
of the database. For now don't worry about what that request is or how we've written it - we'll come back
to that topic in detail later in this chapter. Look at the mechanics of how we're issuing the request and
getting back the results. What we're going to ask the database for is alist of those girls who are marked
as Favourite Solo models. We chose this because both the models in our current samples directory are
marked as this and so even if you only have our sample records |oaded, you should find some matches.

Example 2.4. Database Query

/1 do db sel ect

/1 0 1 2 3

$query = "sel ect mane, nodel no, nbigi nage, mnage from".
$wacs- >conf _get _attr("tabl es", "nodel s").
' where nflag = 'S order by mane";

$cursor = $dbhandl e->query($query);

The method is alittle different in perl in that it is seperated into two steps; as aresult it looks like this...

do db sel ect

0 1 2 3

$query = "sel ect mane, nodel no, nbigi nage, minage from".
conf_get attr("tabl es", "nodel s").
' where nflag = 'S order by mane";

$cursor = $dbhandl e- >prepare($query);

$cur sor - >execut e;

Note

The query structure is very similar between Php and perl apart for the two step process of
validating and then seperately executing the query in perl. Thisis mostly down to different
traditions that exist for database accesses in each language. The net result is similar in
technical terms and identical in output terms

In both cases we're putting together an SQL query that reads:

sel ect mmane, nodel no, nbi gi mrage, m nage
from nodel s

where nflag = 'S

order by mmane

This query asks the database to fetch the four named items: mane, nodel no, nbi gi nage, and
nm mage from the database table called nodel s wherethefield nf | ag hasavalue of the capital letter S
and to sort theresultsit returnsto usby thevaluein thefield called rmamne. It may not surpriseyou to learn

Basics: Getting Started

that mane isthe model'sname, nodel no isour reference number for her, mbi gi mage isthe(location
of the) large size headshot of her and mi mage isthe (location of the) smaller size headshot of her.

You may have noticed that the only part of this that wasn't copied verbatim from the code isthe f r om
nodel s bit and that there we've used the WACS API call conf_get_attr to get the actua name of
the database table concerned from the main WACS configuration file. This is actualy important and
it's strongly recommended that you do use this form when creating SQL queries. If you redly insist on
knowing why, take alook at the section on the tables part of the wacs.cfg configuration filein the WACS
configuration guide.

Once we've created the SQL query, we feed it to the database routines. The first step is to pass in the
SQL query and have the database perform that search on the database. Once the query has been executed,
we want to pull back the matching records (or r ows in database parlence) for each model. In both Php
and Perl we're calling aroutine that returns to us a single row from the database (a single model's record
in this case) each time it's called. When we run out of records, a null return is given and our while loop
ends. In Php, the function to do thisis called using f et chRow which returns the next row as an array of
values, which we assign into the variable $r esul t s eachtime. In Perl, the function we're using is called
f et chr ow_ar r ay because perl offers us a choice in the type of data we are returned and in this case
we want anumerically indexed array.

Note

There are other approaches to getting back the data, including having it returned in one
big lump (such as with the Php call get Al | ()) - this has been avoided as some WACS
installations might have tens of thousands of matching records for some queries.

Showing The Results

The final step isto actually generate some output from the data we've fetched from the database. We're
going to do this as an unordered list in HTML, so we're going to be adding a little formating to the output
as we retrieve each record.

Example 2.5. Outputing The List

print "\n";
whil e($results = $cursor->fetchRow())

{
print "";
print "conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $resul ts[1]."\">";
print $results[0]."\n";
}

print "\n";

and here's the perl version...

print "\n";

while(@esults = $cursor->fetchrow array)

{
print "";
print "<a href=\"".conf_get _attr("server","cgiurl");
print "wacsnpthunbs/". $results[1]."\">";

Basics: Getting Started

print $results[0]."\n";

}

print "\n";

We start off by printing out the HTML instruction to start an unordered list () in aline on it's own.
We then start a while loop which goes through each entry until it's done them all. Both versions use the
database cursor object ($cur sor) tofetch the next record (akarow) from the database using thefetchRow
or fetchrow_array method and assigning it into the array $r esul t s (or in perl @ esul t s). The act
of the assignment fails when there are no more records to fetch and the while loop will terminate. The
construct here is based upon the fact that both languages have seperate operators for assignment (=) and
comparison (== and eq) and so the code is unambiguous (at least to the php and perl interpretersitis!).

Onceinsidethe body of the whileloop we print out the start of list entry tag (<I i >) and start in on making
use of the data. In the quest to make this example alittle bit more satisfying, we've tried to make sure this
application does something vaguely useful. A simplelist of namesisall well and good, but we wanted it to
actually do something! So what we've done hereisto create alink around each models name that pointsto
her model page as displayed by the standard WACS tools. Theraw HTML to achieve thiswould look like:

Sar ah</ a>

Sowe'releft with aslight problem herein that we don't know in advance (trust me on this) what the WACS
server is called, we don't know what the models are called and we don't know what their numbers are. We
have no ideaif we have amodel number 123 or not and whether she's called Sarah; but the WACS system
should be abletofill in al the blanks for us.

The first part of the code merely prints out the start of the HTML <a hr ef =" > and then we ask the
WACS configuration system what it's externally visible URL for cgi-bin programs is. We do this using
the conf_get_attr call again, telling it we want an answer in the section server of the URL for cgi scripts
akacgi url . Onthe next line of the example we put the name of the WACS application we want to link
to, in this case wacsmpthumbs. Since the way we tell wacsmpthumbs what we want it to look up isto
add a slash and then the model number to the URL, we add aslash (/) on the end and then the number.

Tip
Y ou may have noticed that we added a comment on the line above the SQL select statement

with 0,1,2,3 with each number above the field name in the query. This was a shorthand to
ourselvesto remind uswhat theindex number in the array isfor each of those databasefields.

Since the order of thefieldswe asked for wasmrmane, nodel no, nbi gi nage andthenm mage, the
resultsin the array will be the same - element O will be the mname, element 1 will be the model number,
and so on. In both cases we're dealing with a single-dimensional array. The first field we want to go into
the URL for wacsmodelthumbs is the model number, so that will be element 1 (not zero) therefore we
write $r esul t s[1] . We then finish off the URL reference by closing the quotes (*) and the > tag.

We then want to print the model's name which will be element O in our arrays, put out the closing anchor
tag () and then finish off the unordered line entry with the end line tag (). We then print out a
new line so the generated page is easier to read. The moving on to the next record will be done as a by-
product of the test for the next iteration around the while loop. Once we exit the loop, we finish off the
HTML unordered list.

Finishing Off

To just finaly finish it off, we need to add a few more pieces just to make it work. For the Php version,
we heed to declare it as being a php program with <?php at the very start of the file, with amatching ?>

10

Basics: Getting Started

at the very end. For perl, we need to declare it as aperl script with the very first line being just #! / usr /
bi n/ per| . Additionaly for perl, we need to output the mime content type declaration so that the web
browser knows what kind of object it's being passed - thisis done simply with:

print "Content-Type: text/htm\n";
print "\n";

Next we need a couple of lines of HTML preamble near the beginning (as mentioned before, just before
the database connection code so we could see any error message that appears):

<htnm >
<head>
<title>WSinmple: Index O Favourites</title>
</ head>
<body>

Similarly at the end, we just need to finish the page off with the html tail piece:

</ body>
</htm >

Putting It All Together

With all the components in place, let's review the new MySimple WACS program in it's entirety. We
include the modules, initialise the configuration system, check the authorisation, connect to the database,
draft the query, submit it and then loop through the results. Not really that complex now we know what
each part does. Anyway here's the finished code....

Example 2.6. Php: Complete Simple Program

<?php

/1 MySinmple - sanple WACS APl program (PHP5)

requi re_once "wacs. php";

requi re_once "DB. php";

$wacs = new VMACS;

/1 read the Wacs configuration files

$wacs- >read_conf ();

/1l check the auth(entication and authorisation) of this user
$wacs- >check_aut h($_SERVER' REMOTE_ADDR], 1);

/] start the HTML docunent

print "<htm >\n";

print "<head>\n";

print "<title>MSinple: Index O Favourites</title>\n";
print "</head>\n";

print "<body>\n";

/] database initialisation

/1 - establish environment variable

$dbi env = $wacs- >conf _get _attr("dat abase", "dbi envvar");
if(! enpty($dbienv))

{

11

Basics: Getting Started

put env($dbi env. "=". $wacs- >conf _get _attr("dat abase", "dbi envval ue"));
}
/1 - connect to the database
$dbhandl e= DB: : connect ($wacs->conf_get _attr("database", "phpdbconnect"));
i f(DB::iserror($dbhandl e))

{

}
$dbhandl e- >set Fet chMode(DB_FETCHMODE _ORDERED)

/1 do db sel ect

/1 0 1 2 3

$query = "sel ect mane, nodel no, nbigi mage, m nmage from".
$wacs- >conf _get _attr("tabl es", "nodel s").
" where nflag = 'S order by mane";

$cursor = $dbhandl e- >query(S$query);

/1 output the results

print "\n";

whil e($results = $cursor->fetchRow())

die("Can't connect to database\nReason:". $dbhandl e- >get Message()."\n");

{
print "";
print "conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $resul ts[1]."\">";
print $results[0]."\n";
}

print "\n";
[/ finish off
print "</body>\n";
print "</ htm >\n";
?>

Example 2.7. Perl: Complete Simple Program

#1/ usr/ bi n/ perl

#

MySinmpl e - Sanpl e WACS Program (Perl)

#

use WAcs;

use DBI;

read the Wacs configuration files

read_conf;

check the auth(entication and authorisation) of this user
check_aut h($ENV{" REMOTE_ADDR'}, 1);

out put the HTM. headers

print "Content-Type: text/htm\n";

print "\n";

print "<htm >\n";

print "<head>\n";

print "<title>MSinple: Index O Favourites</title>\n";
print "</head>\n";

print "<body>\n";

database initialisation

12

Basics: Getting Started

- establish environnent variable
$dbi env = conf _get _attr("database", "dbi envvar");
i f($dbienv ne "")

{
$ENV{ $dbi env} = conf_get _attr("database", "dbi envval ue");

}
- connect to the database
$dbhandl e=DBI - >connect (conf_get_attr("database", "dbi connect"),
conf_get _attr("database", "dbuser"),
conf_get attr("database", "dbpass”)) ||
die("Can't connect to database\nReason given was $DBl::errstr\n");
do db sel ect
0 1 2 3
$query = "sel ect mane, nodel no, nbigi mage, m nmage from".
conf_get _attr("tabl es”, "nodel s").
" where nflag = 'S order by mane";
$cursor = $dbhandl e- >prepare($query);
$cur sor - >execut e;
print "\n";
while(@esults = $cursor->fetchrow array)

{
print "";
print "<a href=\"".conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $resul ts[1]."\">";
print $results[0]."\n";
}
print "\n";
finish off

print "</body>\n";
print "</ htm >\n";

Running MySimple

Our first WACS application is now complete, so copy the file into the either the web server document
tree (for Php) or the web server cgi-bin directory (for perl). When you call up the URL, you should see
something like this....

13

Basics: Getting Started

® Eoxanne

® Sabrina

Granted it's fairly plain, but the names are in aphabetical order and there are links on each name to
that girl's model page. If you didn't see any output, or got an error, you need to check the error log
for the server you're using. With Apache on linux, the usual location of thisis/ var/ | og/ htt pd/
WWW. mywacser ver. com errorl og or something similar to that.

Reviewing The First Program

This has been a fairly long and intense chapter, but we obviously had a lot of ground to cover and we
really wanted to achieve a usable program before the end of it. This hopefully we've done. We've seen
how to include the WA CS module and the Database interface module. We've seen how to use read_conf
and check _auth to read the configuration files and check the user's credentials. We've then made multiple
uses of conf_get_attr to get all of the information together we need to make a connection to the database.

After al that setup procedure, which will become avery familiar template asyou program with the WACS
API, welooked at creating and sending a query to the database, retrieving the results and formating those
results as asimple web page. In the next chapter, we'll ook at how to make use of other information stored
within the database.

14

Chapter 3. Using More Database Fields
Adding Model Icons

In the smple examplein thelast chapter, we saw how to create alist of model's nameswith hypertext links
on each name to that model's standard WACS model page. Obvioudly that's not a particularly presentable
page by itself, so the next step isto add a head shot for each model to the links.

We actually aready paved the way for doing this by including the two headshot image fieldsin the results
we asked for from the SQL query - if you remember, we put:

sel ect mmane, nodel no, mbi gi mage, m mage

Since we have the data already, al we need to do now is to add a few extra statements to the output
section to output an appropriate image tag and we'll have included the model's headshot too. We have a
configuration attribute in the server section of the configuration file called siteur| that tells us where the
site specific WACS web elements area can be found on the WACS server. Standard size model headshots
are conventionally found inthei cons/ directory directly below thetop level. So all we need to doisadd
inacall to conf_get_attr to get it and build the apropriate HTML i ng tag. In PHP we'd write:

print "conf_get_attr("server","siteurl");

print "icons/".$results[3]."\" alt=\"[".$results[0]."]\">";
and in perl we'd write:

print "<img src=\"".conf_get_attr("server","siteurl");

print "icons/".$results[3]."\" alt=\"[".$results[0]."]\">";

this needs to be done just below the line that establishes the link to the model's WACS model page, but
before her name (you could put it after if you prefer) and closing </ a>.

Example 3.1. Modified Output L oop with Icon Code

while($results = $cursor->fetchRow())

{
print "";
print "conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $resul ts[1]."\">";
print "<inmg src=\"".$%wacs->conf_get _attr("server","siteurl");
print "icons/".$results[3]."\" alt=\"[".$results[0]."]\">";
print $results[0]."\n";

}

and in perl this now looks like:

while(@esults = $cursor->fetchrow array)
{
print "";
print "<a href=\"".conf_get_attr("server","cgiurl");

15

Using More Database Fields

print "wacsnpt hunbs/". $resul ts[1]."\">";

print "<inmg src=\"".conf_get_attr("server”,"siteurl");
print "icons/".$results[3]."\" alt=\"[".$results[O]."]\">";
print $results[0]."\n";

}

We then copy up the modified version of the program and run it and we should see something like this:

Roxanne

Sabrina

More Model Information

The WACS database does of course carry far more information about the model thank just her name and
icons, so for the next step we're going to look at adding afew basic pieces of information about her to each
entry. Thefirst step isto add some additional fieldsto thelist of what we want returned by the SQL query.
Initially we're going to add another five fields: they arenmhai r, mength, ntitsize, mmsets
andmvi deos. Thesedatabasefieldsgiveusher hair colour, length, the size of her breastsand the number
of images sets and videos we have by her respectively. The modified version of the query looks like:

Example 3.2. Modified SQL command for more Model Info

// do db sel ect

/1 0 1 2 3 4
$query = "sel ect mane, nodel no, nbigi nage, mi nage, mhair,

/1 5 6 7 8
" mength, mitsize, msets, mvideos from"
$wacs- >conf _get _attr("tabl es", "nodel s").
' where nflag = 'S order by mane");

$cursor = $dbhandl e->query($query);

in php.

16

Using More Database Fields

Note

We've added a second line of comments with the element numbers within the array that the
returned database field will appear in; mlength will be index 5 for instance.

The same code in perl will look like:

do db sel ect

0 1 2 3 4
$query = "sel ect mmane, nodel no, nbigi rage, ni nmage, mhair,

5 6 7 8
" mength, mitsize, mmsets, mvideos from".
conf_get _attr("tabl es", "nodel s").
' where nflag = 'S order by mane";
$cursor = $dbhandl e->prepare($query);
$cur sor - >execut e;

Using HTML tables

The next step is to modify the display loop to include the extra details and in this case it probably makes
sense to switch to using an HTML table cell to contain and manage the entry. Well start off by simply
re-writing the existing display loop to build the results into an HTML table instead - once we have that
working, we'll restyle the table to include the extra fields we just added to the query. There is no actual
requirement to make use of all the fields we've requested.

Lets have alook at the structure of the HTML document we're outputing here: First we need to open the
new table, then each model will have her own row as we go through with the headshot image on the left
and her name on the right, and finally well finish off the table. The HTML (minus the links) to do this
will look something like:

<t abl e>
<tr>
<td><i mg src="icons/Roxanne-1.jpg" alt="[Roxanne]"></td>
<t h>Roxanne</t h>
</tr>
<tr>
<td><inmg src="icons/Sabrina-1.jpg" alt="[Sabrina]"></td>
<t h>Sabri na</t h>
</tr>
</tabl e>

Of coursethe next step isto re-write the code to actually recreate the necessary HTML ; the start and end of
the table simply replace the unordered list (and </ ul >) tags outside the loop that iterates through
the list of models returned by the database. The list element (<l i > and </ | i >) tags get replaced by the
row start and end tags (<t r > and </ t r >. Since we're puting the headshot icon and the name in separate
elements and want a link to the appropriate model page on both of them, we need to double up the code
that createsthe hypertext link to wacsmpthumbs. We then include the icon (with alignment attributes) in a
standard tabletag (<t d>andthenameinaheading (<t h>) tabletag soit comesoutin bold andiscentred.

The mysimple example thus re-writen will look like:

Example 3.3. New version of theloop using tables

17

Using More Database Fields

/1 output the results
print "<table>\n";
whil e($results = $cursor->fetchRow())

{
/] start the HTML table row
print "<tr><td valign=top align=center>\n";
/1 l'ink around the headshot inage
print "conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $resul ts[1]."\">";
/1 head shot image
print "<ing src=\"".%$wacs->conf_get_attr("server","siteurl");
print "icons/".$results[3]."\"[".$results[0]."]\">\n";
/1 end this cell and start the next
print "</td><th>\n";
/1 link around nane
print "conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $resul ts[1]."\">";
/1 the nane
print $results[0]."\n";
/1 end the HTM. table row
print "</th></tr>\n";
}

print "</table>\n";
[/ finish off

and re-writing the same function in perl gives us something like:
output the results

print "<table>\n";
while(@esults = $cursor->fetchrow array)

{
start the HTM. table row
print "<tr><td valign=top align=center>\n";
link around the headshot image
print "<a href=\"".conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $resul ts[1]."\">";
head shot inage
print "<inmg src=\"".conf_get_attr("server”,"siteurl");
print "icons/".$results[3]."\"[".$results[0]."]\">\n";
end this cell and start the next
print "</td><th>\n";
link around nane
print "<a href=\"".conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $resul ts[1]."\">";
the nane
print $results[0]."\n";
end the HTM. table row
print "</th></tr>\n";
}
print "</table>\n";
finish off

When run, this modified version of the script should produce the following;:

18

Using More Database Fields

Roxanne

Sabrina

Asyou can seeg, this hasimproved the layout somewhat over the previous version using just unordered list
elements. Now to add those extrafields....

Adding The Model Details

To display some more details about the model, we're going to span the headshot on the left hand side
over several rows, and add the model details themselves as additional table rows on the right hand side.
Our first change therefore is to add r ows pan=4 to the options on the image container <t d> tag. The
resulting php codeis:

/] start the HTML table row
print "<tr><td rowspan=4 valign=top align=center>\n";
/1 link around the headshot inage

and in perl reads:
start the HTML table row
print "<tr><td rowspan=4 valign=top align=center>\n";
link around the headshot image
Next we add the second row which will include her hair colour and length, then athird row which will

describe her breast size and the fourth row that gives the number of image sets and the number of videos
we have for her.

Example 3.4. Adding Model I nformation

19

Using More Database Fields

/1 end the HTM. table row

print "</th></tr>\n";

/1 do the second row (her hair)
print "<tr><td>hair: ";

print $results[5]." ".$results[4];
print "</td></tr>\n";

/1 do the third row (her breasts)
print "<tr><td>breasts: ";
print $results[6]."\n";

print "</td></tr>\n";

/1 do the fourth row (her sets)
print "<tr><td>sets: ";

print $results[7];

if($results[8] > 0)

{

}

print "</td></tr>\n";

print videos: ".$results[8];

and the same implemented in perl would look like:

end the HTM. table row

print "</th></tr>\n";

do the second row (her hair)
print "<tr><td>hair: ";

print $results[5]." ".$results[4];
print "</td></tr>\n";

do the third row (her breasts)
print "<tr><td>breasts: ";
print $results[6]."\n";

print "</td></tr>\n";

do the fourth row (her sets)
print "<tr><td>sets: ";

print $results[7];

if($results[8] > 0)

{

}

print "</td></tr>\n";

print videos: ".$results[8];

}

With these changes made, if you now run this version of the program, which is called mysimple4 in the
sanpl es/ progranm ng directory, you should see something like this:

20

Using More Database Fields

Roxanne
hair: Long Dark Hair
breasts: Small
sets: B videos: |
Sabrina
hair: Shoulder B londe

breasts: Small

There's obviously alot more room for using many more of the fields within the model schemafor further
improvement of our model index, and we'll return to this subject in alater chapter (Chapter 6, The User
Interface Toolkit). Before we leave the topic of models and move on to sets, we will cover just one more
topic, that of adding rating icons.

Adding Other Icons

One of the significant features of WACS isits ability to include various attribute icons within pages to
make specific aspects and attributes easier to recognise. While many of them need some additional logic to
handle their display, afew of them like the model's rating and country of origin are actually fairly simple
to use. We're going to take a quick look at how we'd use the WACS API to include the rating icons before
moving on to look at how we handle sets. We will return to the more complex cases later when we look
at the User Interface toolkit API.

For the model's rating, we need the field called nr at i ng so the first step is to add this to the list of
fields that we select from the database:

// do db sel ect

/1 0 1 2 3 4
$query = "sel ect mane, nodel no, nbigi rage, m mage, nhair, ".
/1 5 6 7 8 9

m ength, ntitsize, msets, mvideos, nrating ".
"from".$wacs->conf _get _attr("tabl es", "nodel s").
" where nflag = 'S order by mane";

$cursor = $dbhandl e- >query(S$query);

and in perl the change makes this section read:

do db sel ect

21

Using More Database Fields

0 1 2 3 4
$query = "sel ect mane, nodel no, nbigi nage, m nmage, nhair, ".
5 6 7 8 9

m ength, mitsize, msets, mvideos, nrating ".
"from".conf_get_attr("tabl es", "nodel s").
" where nflag = 'S order by mane";

$cursor = $dbhandl e- >prepare($query);

$cur sor - >execut e;

With the rating field now in the data returned to us by the database, we can move down and update the
display section to make use of it. The first step needed is to change the r owspan setting from 4to 5to
accomodate the extraline of output.

/1 start the HTM. table row
print "<tr><td rowspan=5 valign=top align=center>\n";
/1 link around the headshot inage

andin perl...

start the HTML table row
print "<tr><td rowspan=5 valign=top align=center>\n";
link around the headshot i mage

The final step is to add the processing of the mrating field. All WACS icons are typically stored in the
gl yphs/ directory which is within the web server document tree. To find its exact URL, you use the
conf _get attr function to retrieve the valuei conur | in the section server. Within this directory,
you will find fivefilescalledr at i ng- 1. png throughr at i ng- 5. png which look like this:

o

To make use of thiswe need to first test our datato see if we have avalid ratings value at all, then merely
concatinate a string to create the necessary icon reference. In php, thiswill look like this:

Example 3.5. Adding A Rating I con

print "</td></tr>\n";

/! add the rating icon (if we have a val ue)
print "<tr><td align=center valign=top>";
if($results[9] > 0)

{
print "<inmg src=\"";
print $wacs->conf_get _attr("server","iconurl");
print "rating-".$results[9].". png\">";
print " alt=\"[".$results[9]." out of 5]\">";
}
el se
{
print "no rating";
}

print "</td></tr>\n";

22

Using More Database Fields

while the same example in perl, would look like this:

print "</td></tr>\n";
add the rating icon (if we have a val ue)
print "<tr><td align=center valign=top>";
if($results[9] > 0)

{
print "<img src=\"".conf_get_attr("server","iconurl");
print "rating-".$results[9].".png\"";
print " alt=\"[".$results[9]." out of 5]\">";
}
el se
{
print "no rating";
}

print "</td></tr>\n";

}

Once you've put in these three changes, you can run the resulting script and expect to get an output
something like this:

Roxanne
hair: Long Dark Hair
breasts: Small
sets: 8 videos: |
JIIIID
Sabrina
hair: Shoulder B londe
breasts: Small

sets: 5

At this point we're hopefully beginning to get arather more satisfying display of model details. Obviously
there are many other tweaks we might like to add, and we'll return to some of those later on when we look
at the User Interface Toolkit and the routines that provides. There is however one more thing we really
should cover now - what happens when something goes wrong.

Improving Error Reporting

One of the most important thingsin good website engineering is ensuring that when thingsfail, it'shandled
gracefully with some kind of reasonable error message returned to the user, and that the event is logged

23

Using More Database Fields

properly in the system error logs. There are basically four ways in which a WACS application is likely
to fail - authentication, failure to parse the configuration files, and failure to connect to the database, and
failure to find the content.

The authentication failureis pretty conclusively covered by the core WACS check_aut h function and
it's partners. The parser is rather more tricky to cope with, and the XML parse routines tend to just abort -
it'salso very al or nothing; the file parses or it doesn't. Additionally once a configuration fileisin place,
it's unlikely to become corrupted; if it's merely disappeared the defaults will be used and the system will
most likely have problems at the next stage of connecting to the database. The third is connecting to the
database, which we'll deal withinamoment. Thefourth, failureto find content, doesn't result in completely
blank screens and should get reported to you quite quickly. Additionally there are so many placesit could
be (raid parition, lvm volume, remote fileserver) that we can't really do much in agenera way.

Where we can get some traction iswith decent reporting of database connection problems, and thiswhere
the dber r or function comes into play. Previoudly, if we failed to connect to the database we did the
following in php:

i f(DB::iserror($dbhandl e))
{
die("Can't connect to database\nReason:".
$dbhandl e- >get Message(). "\ n");

}

and the similar stepsin perl were:

$dbhandl e=DBI - >connect (conf_get_attr("database", "dbi connect"),
conf _get _attr("database", "dbuser"),
conf_get attr("database", "dbpass”)) ||

die("Can't connect to database\nReason given was $DBl::errstr\n");

To improve this, we're going to change this (called mysimple6 in the example code) to use the dberror
functioninstead. Thisisaroutinethat uses named parameters, atechniquewe'll seealot more of later aswe
use the WacsUI programming library. Basically we passit up to five arguments or parameters, but we tell
it what each oneis, thus the order doesn't matter and if any of them are missing, it doesn't affect the values
of the others. The dberror routine expects parameters called: header, message, error, dbuser and dbhost.

The header is to tell the routine how early in the proceedings we are and whether we still need to start
the HTML of the web page. Setting header to y says we do want a header added, setting it to n sayswe
don't. The next one, message isthe message that the end user will see. The next three are the error message
returned by the database routines, the username it was trying to use, and the database connect string it was
trying to use. Hereis the code for doing thisin PHP5:

Example 3.6. Calling dber r or for better error reporting

if(DB::iserror($dbhandle))
{
$wacs- >dberror (array(
"header"=>"y",
"message" =>"MWSi npl e6: Can't connect to database”,
“error"=>%dbhandl e- >get Message(),
"dbuser " =>$wacs- >conf _get _attr("database", "dbuser"),
"dbhost " =>$wacs- >conf _get _attr("database", "phpdbconnect")

24

Using More Database Fields

)
}

while the same basic code in perl looks a little simpler because the parameter names don't need to be
packaged up into an array before they're passed:

$dbhandl e=DBI - >connect (conf_get _attr("database", "dbi connect"),
conf _get attr("database", "dbuser"),
conf_get attr("database", "dbpass")) ||
dberror(header=>'n',

nmessage=>"Can't connect to database",

error=>$DBl ::errstr,

dbuser =>conf _get _attr("dat abase", "dbuser"),

dbhost =>conf _get _attr ("dat abase", "dbi connect"));

With the error reporting improved, we'll move on to other things. We'll continue to use the short form
version of the error message for brevity in the later examples, but you'll know that you probably want to
actually use dberror in most cases. Next up, we'll take a look at displaying set details rather than those
of models....

25

Chapter 4. Set Display Routines
About Set Display

So far we've looked at displaying the information in the models table in the database, but of course there
is also the small matter of setswithout which whole thing wouldn't have much point. In this chapter we're
going to look at displaying details of the sets, and then towards the end of the chapter, how to tie models
and sets together.

In most of these examples, we're going to use the standard WACS tools to actually display the details of
the sets themselves, but you should be aware that there are several special functions within the WACS
User Interface toolkit that do this rather better. We will meet these, which are called iconlink, thumblink
and contentlink in alater chapter. You can of course write your own web apps or functions to do this
should you wish to as well. In most cases wel'll throttle the examples to only show a first few sets from
the databases and assume you'll develop your own strategies for paginating and sub-dividing the setsin
real world applications.

Sets: The Basic Bones

Sincewerestarting anew application, we'll start from scratch with the basic boneswhich welll call setdisp.
Much of the basic structure of this program should be getting quite familiar by now. The same five basic
steps are to be found here - bring in the modules, initialise them, set up the database connection, submit
the query and loop through the results outputting them.

What we're setting out to do in this script isto display alist of the latest additions of image sets marked
as being of category flag type T which means they're solo sets involving toy usage. This we achieve by
requesting only sets of type | which meansimage sets and of category flag type T.

. Tip

The full lists of recommended values for the type and category flag can be found in the
schema reference section at the back of this book in Chapter 13, Schema Reference: Sets.

The basic format is that we once again create an HTML table with a row for each record. There's alink
on the name of the set that leads to the standard WACS page display program wacsindex. This takes a
number of URL arguments but the one we're using here isto prefix the set number with page which puts
it into paged display mode and appended with a. ht m so that it saves correctly and in some cases will
get cached. We're shrinking thefont in which it'sdisplayed asit can be quite along line of text init's stored
form (but more on that topic later).

Note

The SQL query itself looks after the ordering of the output; the or der by sadded
desc retrieves the entries in the reverse order in which they were added - the database
field sadded being the date the set was added to the database, and the desc (meaning
descending) puts the biggest value first. In this case that is the most recent date...

Example 4.1. The Basic SetDisp Program

26

Set Display Routines

<?php

/1 setdisp - set display program

requi re_once "wacs. php";

requi re_once "DB. php";

$wacs = new VMACS;

$wacs- >read_conf ();

$wacs- >check_aut h($_SERVER' REMOTE_ADDR],1);
/] start the docunent

print "<htm >\n";

print "<head>\n";

print "<title>SetDisp - List of Sets</title>\n";
print "</head>\n";

print "<body>\n";

/1 connect to the database

$dbi env = $wacs- >conf_get _attr("dat abase", "dbi envvar");
if(! enpty($dbienv))

{

}

$dbhandl e = DB:: connect ($wacs->conf_get_attr("database", "phpdbconnect"));
i f(DB::iserror($dbhandle))

{

put env($dbi env. "=". $wacs- >conf _get _attr("dat abase", "dbi envval ue"));

die("Can't connect to database\nReason:". $dbhandl e- >get Message()."\n");

}
$dbhandl e- >set Fet chMode(DB_FETCHMODE _ORDERED)

/1 0 1 2 3 4 5
$query = "select setno, stitle, stype, scatflag, sinmges, scodec "
"from".$wacs->conf_get_attr("tables","sets")." ".
"where stype = '1' and scatflag ='T" "

"order by sadded desc ";
$cursor = $dbhandl e- >query(S$query);
print "<table>\n";
$set count =0;
while((($results = $cursor->fetchRow)) &&
($setcount < 25)))

{
/] start the row
print "<tr><td align=center>\n";
/] create the link
print "conf_get_attr("apps", "wacsi ndex");
print "/page".$results[0].".htm\">"
/1 print out the set nane
print ""
print $results[1]."\n";
/1 end the row
print "</td></tr>\n";
$set count ++;
}

print "</table>\n";
print "</body>\n";
print "</ htm >\n";
?>

and implementing the same code in perl gives us:

27

Set Display Routines

#1/ usr/ bi n/ perl

setdisp - set display program

use WAcs;

use DBI;

read_conf ();

check_aut h($ENV{' REMOTE_ADDR }, 1);

out put the HTM. headers

print "Content-Type: text/htm\n";

print "\n";

print "<htm >\n";

print "<head>\n";

print "<title>SetDisp - List of Sets</title>\n";
print "</head>\n";

print "<body>\n";

connect to the database

$dbi env = conf _get _attr("dat abase", "dbi envvar");
i f($dbienv ne "")

{
$ENV{ $dbi env} = conf_get _attr("database", "dbi envval ue");

$dbhandl e=DBI - >connect (conf_get_attr("database", "dbi connect"),
conf_get _attr("database", "dbuser"),
conf_get attr("database", "dbpass”)) ||

die("Can't connect to database\nReason given was $DBl::errstr\n");

0 1 2 3 4 5
$query = "select setno, stitle, stype, scatflag, sinmges, scodec "
"from".conf_get_attr("tables","sets")." ".
"where stype = 'l' and scatflag ="'T ".

"order by sadded desc ";
$cursor = $dbhandl e- >prepare($query);
$cur sor - >execut e;
print "<table>\n";
$set count =0;
while((($results = $cursor->fetchrow array) &&
($setcount < 25)))

{
start the row
print "<tr><td align=center>\n";
create the link
print "<a href=\"".conf_get_attr("apps", "wacsi ndex");
print "/page".$results[0].".htm\">"
print out the set name
print ""
print $results[1]."\n";
end the row
print "</td></tr>\n";
$set count ++;
}

print "</table>\n";
print "</body>\n";
print "</ htm >\n";

28

Set Display Routines

When we run this set against our demonstration web server, we get the following output which isalist of
the sets containing dildo use in most-recent first order.

Sabrina BlackTopG reySkirtPinkBraPanties White BedDildoPussyClip
Roxanne RedWhite Tufts See ThruBabyDollDressMatchingPanties White SofaRope LightsChristmas Tree Dildo
Sabrina CyanSee Thrulingerie TopWhite Stoc kings MoPanties White SofaDildo
Rosanne BrownLeopardPrintBraMatching Panties White Double BedDildo

Adding Icons

While it works and is usable, it's not exactly the greatest web page ever, so let's try and brighten it up a
little. It'd be quite nice to be able to include an icon, and of course wacs has the infrastructure to do this
for us. In fact, it offers us three different options of what size of iconswe'd like: set, stdandm ni .
In this case since we're trying to get afair number of entries shown, we'll opt for the m ni version. We
get this by calling the wacsimg command and specifying that we'd like the mini version.

To makethis happen we need to add another cell to thetablewiththe HTML i ng tag pointing at wacsimg.
Asbeforewelll specify bothal i gnandval i gn propertiesfor thistable cell. So if we modify the code,
much as we did before for the model icons, we get the following in php:

Example 4.2. Adding A Set Icon

/] start the row

print "<tr><td valign=top align=center>\n";

/1 create the Ilink for the icon

print "conf_get_attr("apps", "wacsi ndex");
print "/page".$results[0].".htm\">"

/1 add the icon itself

print "<ing src=\"".%$wacs->conf_get_attr("apps", "wacsi nmg");
print "/mni".$results[0].".jpg\" alt=\"[icon for ";
print $results[0]."]\">";

/1 end cell, next cel

print "</td><td align=center>\n";

/1 create the link

and of course the same example in perl looks like:

start the row

print "<tr><td valign=top align=center>\n";

create the link for the icon

print "<a href=\"".conf_get_attr("apps", "wacsi ndex");
print "/page".$results[O0].".htm\">";

add the icon itself

print "<img src=\"".conf_get_attr("apps", "wacsi ng");

29

Set Display Routines

print "/mni".$results[0].".jpg\" alt=\"[icon for ";
print $results[0]."]\">";

end cell, next cell

print "</td><td align=center>\n";

create the link

and if we run the resulting program, we get something like this:

Sabrina BlackTopGrevSkirtPinkBraPanties White BedDildoPussyClip

Roanne RedWhite Tufts See ThruBaby Doll Dre ss Matching Panties White SofaRope LightsChristmas Tree Dildo

Sabrina CyanSee ThruLinge rie TopWhite Stockings MoPanties White SofaDildo

Roxanne BrownLeopardPrintBraMate hingPanties White Dou ble Bed Dildo

Making The Text More Readable

One of the design decisionstaken when designing WA CSwasto encourage directory namesto bethe same
as the set names, and to make those more usable outside of the WACS system, to make them not include
spaces. Instead the so-called Camel Technique, so named because of al the humps in it, where an upper
case letter signifiesthe start of each new word. Thisis used along with atechnique where underscores ()
act as the transitions between the three sections of the set name: these are:

1. Model or Models name(s)
2. Her Clothing
3. Location and Action

However the underscore aspect is only used in the directory name and not in the set title (field sti t 1 e)
as stored in the database which has spaces instead. Amongst our tasks, we will need to replace the spaces
with the appropriate HTML table tags.

Fortunately we can use aregular expression to convert the Camel-Style text back into something a little
bit more readable. This next group of changes to the code are to do exactly that. We're going to take a
dightly different approach from before as we're not going to make the split off partsinto seperate HTML
table cells. Thisis because that makes both the font setting and HTML link creation much more complex
- we're merely going to insert a forced line break
 tag into the places where we want a new line to
start. Then we're going to break up the Camel-Style text into seperate words. We do this with:

Our first substitution is going to be to replace the spaces (the section dividersinthe sti t | e field) with
the appropriate HTML directives. The second and third ones actually break up the words at the points
the case changes:

30

Set Display Routines

Example 4.3. Making Camel-Style Text Readable

/1 print out the set nane

print "";

$prettytext $resul ts[1];

$prettytext preg_replace('/\s/','
', S$prettytext);

$prettytext preg_replace('/(\W ([A-Z][a-z])/"',"'$1 $2', S$prettytext);
$prettytext preg_replace('/([a-z])([A-Z])',"'$1 $2', S$prettytext);
print $prettytext."\n";

/1 end the row

Toimplement the samefunctionality in perl actually usesexactly the sameregular expressions (akaregexp)
but looks very different asit's all done in assignment operations without any explicit function call. There's
no pr eg_r epl ace used here. Anyway hereis exactly the same functionality in perl:

print out the set name

print "";
$prettytext = $results[1];

$prettytext =~ s/\s/
/g;

Sprettytext =~ s, (\w) ([A-Z][a-z]), $1 $2, g;

Sprettytext =~ s,([a-z])([A-Z]), $1 $2, g;

print $prettytext."\n";

end the row

With these changes in place, we can once again copy over the code and we have a much more presentable
output from the program; here's an example:

Sabrina
Black Top Grey Skirt Pink Bra Panties
White Bed Dildo Pussy Clip

Roxanne

Red White Tufts See Thru Baby Doll Dress Matching Panties
White Sofa Rope Lights Christmas Tree Dildo

Sabrina
Cyan See Thru Lingerie Top White Stockings Mo Panties
White Sofa Dildo

Roxanne
Erown Leopard Print Bra Matching Panties
White Double Bed Dildo

Hopefully with this we've got the output presentation of the sets list looking awhole lot better than it was
inthefirst example. There are of course many more fields within the set database that we could al so make
use of in our pages. Wewill return to them when we look at the WA CS User Interface Toolkit in Chapter 6,
The User Interface Toolkit. For now, before we finish our look at sets, we're just going to look at how we
find the model or models featured in a given set.

31

Set Display Routines

Connecting Sets And Models

Understanding The Data Architecture

One of the things that often confuses people about true relational databases is that they are unable to do
a one-to-many or many-to-many relationship directly. While many so called easy-to-use databases do
offer field types that purport to offer such linking, they are problematic and do not fit into any sensible
logical model for how things should be structured. Worse, each vendor's implementation (those who do
implement it at all) is different and incompatible. However with a sensible schema design, this limitation
really isn't aproblem at all.

One such instance of this need to link one-to-many is the concept of linking a set with a model within
WACS. Inthe easy case, you'd have thought that you'd simply put the model number into one of the fields
inthe set schemaand the job would be done. But what do you then do when you have two model sfeaturing
in a set; easy you might say - oneisthe main model, the other is a secondary model, so just add a second
field for the additional model and put the second number there. Of course that then makes the SQL query
more complex each time as you've got to check both fields before you know if amodel isin a set or not.
It still might work, but it's already getting cumbersome. Y ou might discover a set first by virtue of the
additional model and only afterwards identify the official primary model.

Just about every adult sitewe've encountered does feature at least afew setswith three models, so suddenly
we'relooking at asecond additional model field and having to check that aswell. And believe me, thereare
afew sites of which Sapphic Erotica comes to mind in particular where sets with three, four, five or even
six modelsin asingle set are relatively common. Simply put, adding models to the sets table just doesn't
scale. So we take the proper relational database approach and add an additional schema called assoc for
associations which gives us these relationships. It's a very simple schema, basically containing a primary
key, amodel number and a set number.

Using Relationships With Assoc

The process of finding out who isin a set becomes very simple and straight forward - you simply search
the assoc table for the set number you're looking at. If we're looking for who isin set no 123, we simply
use the following SQL query:

sel ect anpdel no from assoc
where asetno = 123

We then merely loop through the results of the above query and each record we find is another model
involved in this set. If we don't get any results returned, then there aren't any models associated with this
particular set. Of course we probably want more than just the model number(s), but that too is relatively
simple. Consider the following query:

sel ect nodel no, mane, ni nmage, nbi gi mage
from nodel s, assoc
wher e nodel no = anodel no

and asetno = 123

This query simply retrieves the model details for each model who isinvolved with this particular set, one
record at a time. Due to the way relational databases are engineered, this is actually a very quick and

32

Set Display Routines

efficent process. Thefirst line of thewher e clause doeswhat isknown asarelational join and establishes
the necessary connection between the assoc and nodel s tables necessary for what we're trying to do.
Additionally it's a very logical and elegant solution that will cope with none, one, two, three, four or as
many models as you like within a single simple action.

Note

Although we make use of the assoc table, we don't actually use any results from it - we don't
need to - it has silently taken care of handling the connection we needed to make.

An Example Using Assoc

If we go back to our example program displaying sets, we can modify it to include this activity as a sub-
routine. What we're going to do is to divide the right hand side of the output into the two cells, one with
thetitle, and the other with the model(s) featuring in the set. Theicon will remain on the left. First stepis
to add the rowspan attribute to the left hand side cell so the icon spansit.

Example 4.4. Modified I1con Cell

/] start the row
print "<tr><td rowspan=2 valign=top align=center>\n";
/] create the link for the icon

and in perl, it'll ook very similar:

start the row
print "<tr><td rowspan=2 valign=top align=center>\n";
create the link for the icon

The next step isto create anew function to handle the query to look up the entriesin the assoc table. We're
going to call this function simply get nodel and it'll take just one argument, the set number for which
we want the model (s) details. It will return to us a potentially quite long string variable containing all the
model names that matched surrounded by alink to each model's WACS model page.

Note

So long aswe use adifferent cursor variable to the database routines we can quite happily run
another query and loop through it's results while inside an outer loop looking at the results
of acompletely different query. Thisiswhere the whole concept of a cursor becomes really
useful.

Example 4.5. getmodel Subroutine

function getnodel ($setno) {
gl obal $dbhandl e;
gl obal $wacs;
$gnresult="";
/1 0 1 2 3
$nodel query="sel ect nodel no, mane, m mage, nbi gi nage "
"from".$wacs->conf _get _attr("tabl es", "nodel s").

33

Set Display Routines

", ".%wacs->conf_get _attr("tables", "assoc")." ".
"where nodel no = anodel no "
and asetno = ".$setno."
"order by mmame "
$nodel cur sor =$dbhandl| e- >query($nodel query);
/1 loop through the results
whi | e($nmodel results = $nodel cursor->f et chRow())

{
/1l do we need a divider?
if(! enpty($gnresult))
{
$gnresul t.="
";
}
/1 add the nodel |ink
$gmresult.="conf_get _attr(
"apps", "wacsnthu")."/".
$nodel resul ts[0] . "\ ">";
/1 add her nane and close |ink
$gmresul t. =$nodel resul ts[1]."";
}

/1 return the conplete string
return($gnresult);

}

and the same code implemented in perl looks like this:

sub getnodel ($)
{
ny($setno)=@;
my($gnresult, $nodel query, $nodel cursor, @mdelresults);
$gnresul t="";
#
$nodel query="sel ect nodel no, mmane, m mage, nbigi mage "
"from".conf_get_attr("tabl es", "nodel s").
", ".conf_get_attr("tabl es","assoc")." ".
"where nodel no = anodel no "
and asetno = ". $setno."
"order by mmame "
$nodel cur sor =$dbhandl e- >pr epar e($nodel query);
$nodel cur sor - >execut g;
loop through the results
whi |l e(@rodel results = $nodel cursor->fetchrow array)
{
do we need a divider
if($gnresult ne "")

{

}
add the nodel |ink

$gmresult.="<a href=\"".conf_get_attr("apps", "wacsnt hu").
“/".$nmodel resul ts[0]."\">";

add her nane and cl ose |ink

$gnmresul t. =$nodel resul ts[1]."";

$gnresul t.="
";

34

Set Display Routines

}

return the conplete string
return($gnresult);

}

The final step of this process is to add into our main loop going through the retrieved set records a call
totheget nodel function. Thislookslike:

Example 4.6. Calling The get nodel Function

/1 next right hand cell

print "<tr><td align=center>\n";
print getnodel ($results[0]);

print "</td></tr>\n";

/1 increnment set count

and in perl thislookslike

next right hand cell

print "<tr><td align=center>\n";
print getnodel ($results[0]);

print "</td></tr>\n";

increment set count

With these changes incorporated into the code, we now have the finished version of the setdisp program
(setdisp4.php or setdisp4 in the samples directory. If we now copy this script up to the web server and
run it, we should see something like this:

Sabrina
Black Top Grey Skit Fink B Panties
White Bed Dido Pussy Glip

Sabrina

Roxanne
Red White Tufts See Thru Baby Doll Dress Matching Panties
Whitz Sofa Rope Lights Christmas Tree Dido

Roxanne

Sabrina
Cyan See Thru Lingerne Top White Stockings No Panties
White Sofa Dildo

Sabrina

Roxanne

Brown Leopard Frint Ba Matching Panties
Whits Double Bed Dido

Roxanne

Once again we've gradually devel oped a program up to the point whereit is now offering quite reasonable
functionality and layout making use of the WACS programmerstoolkit API. Hopefully this has given you
an insight into what WACS is capable of and the basics of how to make use of it's API. In due course,
we hope to have arespository of WACS skins, or mini-site scripts, which you can download and tailor to

35

Set Display Routines

your own needs. If in the course of learning the WACS API you write some programs you'd be happy to
share with others, please send them to us and we'll include them in the respository.

36

Chapter 5. Making The Right Selections
Why Discuss Selections?

Inthelast few chapterswe'vetaken alook at how you usethe WACS API and SQL commandsinyour code
in unison to build an application using WACS. Aswe've gone along, we've introduced you to some of the
commonly used database fields from the various schemas that form the core of the WACS environment.
While there are many fields, all of which are documented in the schema reference section towards the end
of this guide, there are afew that have implicit uses that you should be aware of before you start building
applications in earnest.

In this chapter, we're going to look a several short code segments that should be added to the SQL queries
you form to use WACSwithin your own programs. These code segments ensure that you don't accidentally
show records that you shouldn't, have large numbers of duplicate records or fail to support some of the
standard WACS facilities. All that we will discuss here are things you can choose to leave out if you know
you're not going to use the related facility but in general you do need to be aware of them and it's generally
good practice to support them.

We are going to be looking a three main areas of concern - hiding model records marked as
Pl acehol der s, hiding set records marked as Secondary and Conti nuati on records and
supporting the preference exclusions mechanism whereby certain types of sets are not shown to people
who don't want to see them.

Note

Placeholder model records and preference exclusions are longstanding WACS concepts;
Secondary and Continuation sets were introduced in Wacs 0.9.0 and that code is not
applicable to earlier releases. Adding support for Secondary and Continuation sets requires
presence of the database Schema introduced in WACS 0.8.5; using an older schema than
that will cause SQL errors.

Avoiding Placeholder Models

One of the fields in the model schemaiscaled nfl ag and thisis used to indicate that this particular
model record isof aspecial type. Mostly thisisused for thingslikefavourite listsand is pretty unimportant
to the selection process - the exception to thisisif thisfield has the value P which stands for placeholder.

As you would guess from the name, Placeholder model records are not normally to be displayed - they
exist to be a convenience on which to hang download and association records or to alow records to be
added for new models prior to the release of any of their sets. It is therefore normal to create your SQL
gueries that select model records so that they explicitly do not select placeholder models.

The following SQL code segment that goes in the where clause of the SQL query will do the correct
selection:

(nflag '="'"P or nflag is null)

As an example, if you were selecting all Blonde haired models you would write a query like this to get
the valid models you want shown:

37

Making The Right Selections

sel ect nodel no, mane, nflag, nrating

from nodel s

where mhair = 'Blonde' and (nflag !'="PFP or nflag is null)
order by mmane

Avoiding Duplicate and Alternative Sets

There are some set records within the WACS system that you probably only want to show under a very
limited range of circumstances. These are sets that are marked as Secondary or Continuation sets. Sets
marked in thisway offer nothing different or significant from the viewpoint of the end user but are useful
to us as developers and site managers. Examples of these are different resolution versions of an existing
set or asecond part of avideo clip that has been split into multiple smaller clips. For instance you might
want to offer a reduced resolution image set for web site users to download to their mobile phones, or a
choice of resolutions of avideo clip.

Warning

The concept of Secondary and Continuation sets was introduced in WACS 0.9.0 - prior
to that such sets were marked with a set type of Dupl i cat e which proved cumbersome
and difficult to make use of. Duplicate records were typically hidden using the preference
exclusions mechanism we'll describe in the next section.

Understanding Link Relations

This mechanism isimplemented through the sr ank database field. This currently is defined to have three
possible values or no value - normal sets that should appear are described as primary sets and they will
have an sr ank of P indicating it is a primary record. Where a record has no srank value, it should be
assumed to be a Primary record for backwards compatibility with earlier WACS records.

Inthe casewherearecord isan alternative version of aset that already exists, it should begiventhesr ank
of Sindicating it isasecondary record. In addition to this, thesdupl i cat es field for thisrecord should
contain the set number of it's primary version and the sdupl i cat es field of the primary version should
point to this secondary set. Where there are three or more variants of the same thing, this should be a
circular chain taking you to the next such set and at the final duplicate, back to the primary set. The set
administration tools do not currently support setting up a three or more way chain of links, but the code
shouldn't be broken by that existing within the database.

Thefinal of thethree casesisthat of acontinuation record. Thesewill be giventhesr ank of Cindicating
a continuation record. This srank will only be set on the second and subsequent set records of this
conceptual chain - the first set in a chain with continuations will be either a Primary or Secondary set.
In addition to the set being of the Continuation type, it will have a number of other fields set to help in
navigation. Thefirst of theseisthat the second such set, eg thefirst continuation, will havethespr evi ous
field set to the set number of the first set in the sequence. If there is asecond continuation set (ie third part
of the whole set), the spr evi ous will be set to the number of the first set, and the snext will be
set to the number of the third (second continuation) set.

lllustrating How Link Relations Work

Since thisis afairly complex concept, here's a diagram to try and help you understand what is going on
here:

38

Making The Right Selections

Set Relationship Links
in WACS 0.9.x

Set 123 n
- &)
Prlmary . —— Links between media types
image set
- Links between different versions
/I saltmedia: 124 I of the same content

———— Links between different parts of
the same thing (ie continuation)

Set124
Primary

video clip (High Definition)

I saltmedia: 123

sduplicates: 125 I

Set 125 Set 126
Secondary] Continuation
wideo clip (Standard Definitionk video clip (Standard Definition)
part one of two part two of two
| saltmedia: 123 I I saltmedia: 123 I

sduplicates: 124 sduplicates: 124
I snext: 126 ssetpos: 1 sprevious: 125 ssetpos: 2

In the diagram we're dealing with four separate setsthat effectively contain exactly the same scenario with
the same model in the same location. Thefirst of thesein the diagram is set 123 which isa straightforward
image set - nothing specia about it except that it does have a corresponding video clip. It uses only one
of the relationship links to link to the best quality (and therefore choosen to be the Primary) version of
the video clip which is set 124. Thisisthe sal t medi a link as Video is an alternative media to a still
image set.

Moving on to the video clips, note that all three of them say that their alternative mediaisthe single, only
version of theimage set. Thereforethesal t medi a on each of the videos mentions theimage set, namely
set 123 astheir direct alternative. Thisisfine- it doesn't haveto be asymetric relationship, just true! These
links are shown by the red line on the diagram.

We have three video clips and thisis obviously the most complex part of the diagram and the rel ationships
we're trying to explain. For the sake of argument we're going to say that the first video clip, set 124 is
a High Definition MPEG-4 movie file weighing in at a massive 1920 x 1280 pixels and 700M Bytes. It's
HUGE. The other two video clips are Standard Definition WMV movie files containing the same movie
at DVD resolution of 720 x 480 pixels and weighing in at 90M Bytes and 82M Bytes respectively. These
sizes are far more appropriate for people using media players on their mobile phones, tablet computers
or just simply older PCs without the power to play High Definition video properly. The movie has been
broken into two approximately equal size video clips to make downloading them easier when on the move
or with alimited bandwidth connection.

Starting off with the big High Definition movie clip, we can see that thisis the Primary version of this
set and therefore the one we want to appear in searches, new release highlights and on the simpler model
pages. The other versions are no different in what they contain in terms of subject matter and the choice
between them can be made once the set itself has been selected. We also don't want al three versions
appearing multiply in any selection the user makes.

39

Making The Right Selections

Thefirst of the Standard Definition video clips contains the start of our movie and so that's always going
to be the one that anything else refers to when looking for the smaller version. It's therefore classed as
the Secondary version and it has links back to the primary version by way of the sdupl i cat es link
because it contains the very samefootage asthe Primary version does, just in areduced size format. These
are the green links on the diagram.

Note

Notethat the second part of the video, namely set 126 also links back to set 124 asit's primary
as the longer complete High Definition clip contains the same scenes as the second half of
the Standard Definition clip does. Of course if the High Definition clip was also split into
two parts, the second half of the Standard Definition clipwould link viasdupl i cat es to
the second half of the High Definition clip.

Thefinal group of links on the diagram, those in blue, concern linking together the two sequential halves
of the Standard Definition clip. Therefore set 125'ssnext field says"my movie continuesin set 126" and
set 126 uses spr evi ous to point back to set 125 a preceeding it. In addition the sset pos field is set
to1, 2, 3, etc to indicate a given clip's place within the overall movie.

Note

It's important to note that the spr evi ous and snext link chains are NOT circular. The
sprevi ous of the first (Primary or Secondary) set will be null, as will the snext of the
final set in the chain.

While it's not really what we're discussing here, there are various utility functions in the Wacs St d perl
moduleto aid and abet in maintaining these linksif you are writing your own collection maintenancetools.
Take alook at linkfromprevious and linkrelated for more information on these.

Coding For Link Relations

Hopefully after the last few sections, you now understand why the Link Relations mechanism was added
and how it should work. Obviously we now need to feed this back into how we write SQL codeto retrieve
sets. There are two main things we're going to want to do - the first isto tailor our main retrieval pagesto
ignore these various alternative versions, and the second is on some occasions to detect where there might
be additional icons and links we need to add to our set display code.

The code to ignore Secondary and Continuation records from our normal set index selections. This can
be done with this SQL code segment:

(srank not in ("C,"'S) or srank is null)
Asan example, if youwant to select Leshian setsin a Countrysidelocation, you'd create aquery something
like:

sel ect setno, stitle, stype, srating fromsets
where slocation = 'Country' and scatflag = 'L
and (srank not in ("C,'S) or srank is null);

Note

At this point we've only just started using the srank variable and the three values of Primary;,
Secondary and Continuation seem adequate. It is possible that we might add additional values

40

Making The Right Selections

as we find a need for them - you might therefore wish to define a variable at the top of
your files- $rankfilt to set which ones you're trying to filter. At present this would
be$rankfilt=""C ,'S " andwould be used within the brackets of thei n () clause
inthe SQL.

About Preference Exclusions

If you've spent alittletime aready familiarising yourself with WACS asauser, you may have encountered
the WACS preference exclusion mechanism. We believe this is a pretty unique feature to WACS which
allows a user to specify that they really don't like a certain type of set and to have those sets hidden from
them by default whenever they usethe WA CS system. Thusif auser of aWACS site, for example, doesn't
like Leshian or Behind The Scenes sets, they can set it so those won't appear in their normal browsing or
searching unless they explicitly search for them.

To enable this mechanism to work, once again you need to include a small extra code segment in your
SQL query. Once againit'safairly simple bracketed expression that specifieswhat to exclude and protects
against nul | (no value) as well. Taking the example above of excluding the Lesbian (scatflag of L) and
Behind The Scenes (scatflag of B), we would add the following code:

(scatflag not in ('L',"'B") or scatflag is null)

Fetching The Preference Exclusions Information

Of course, it's not quite as simple as this because we don't actually know what a given users preference
exclusions are at the time of writing the code. We've therefore got to retrieve that information
from their authentication record, be it a lease or a permanent address-based authentication. In earlier
chapters we encountered the conf _get _attr function that can be used to get answers from the
configuration file. There is an amost identical mechanism for getting access to the authentication file
cadledaut h_get _attr.

To make use of theaut h_get _at t r function, we need to provide it with akey with which to look up
the authentication record we want. At present we're keying this on the |P version 4 address of the client
computer to which we're talking although additional methods are due to be added in time. When running
under the Apache 2 web server, we are provided with the address of the client computer viaan environment
variable called REMOTE_ADDR. We pass thisto the aut h_get _at t r function with the prefix "ipv4-"
to indicate the type of address we're passing. The object we need to request from the authentication record
iscaled pr ef excl .

Assuming that our client machine is has the IP Version 4 address of 192. 168. 1. 136 we'd therefore
effectively passtherequest toaut h_get conf as

$excl usi ons = auth_get _conf("ipv4-192.168.1.136", "prefexcl");

Of coursein fact we're not going to hard code the I P addressinto our Perl or PHP script, so the actual code
we write will look more like thisin perl:

$excl usi ons = auth_get _conf("ipv4-".$ENV"REMOTE _ADDR'}, "prefexcl");

and in PHPit'll look like this:

41

Making The Right Selections

$excl usi ons = $wacs->auth_get _attr("ipv4-".$_SERVER] ' REMOTE_ADDR],
"prefexcl");

Once we've excuted this function call, the variable excl usi ons will contain something like "L, B" -
the more observant amongst you will realise that while being what we need to know, it's not yet phrased
inaway that SQL will accept asalist to be passed to an in() clause. We need to quote each of the values
independantly and separate them by commas.

Using The Preference Exclusions

Now that we have the preference exclusions list for our current user, we need to trandate thisinto aform
that SQL will accept as a query condition. The following code segment in perl does this for you:

$excl usi ons =~ s/\s//g; # renove excess spaces
$exclusions =~ s/,/"','/qg; # quote them
$sqgl query .= "and (scatflag not in ('".$exclusions."') or

"scatflag is null)

Y ouwill seethat we'rehere appendingtoavariablecalled sql quer y whichisassumedto aready contain
the necessary sel ect, fromandwher e clausesfor the search we wish to carry out. The same basic
code implemented in PHP will look like:

$exclusions = preg_replace('/\s/','', $exclusions);
$exclusions = preg replace('/,/","","'", $exclusions);
$sqgl query .= "and (scatflag not in ('".$exclusions."') or

"scatflag is null) ";

Note

One optimisation you can, probably should make, isto do this at the start of your program if
you're going to write multiple database queries and place it in aglobal variable. The answer
to the authentication file query is going to be unchanged for the time that this program will
be drawing it's web page or whatever it does.

There are of course occasions when you don't want to make use of the preference exclusions mechanism,
in particular when you're handling saved searches where you assume that if the set is included within the
results returned that that is what the user desires. It's also generally a good ideato indicate somewhere on
the page you generate that preference exclusions have been applied when displaying this particular group
of sets. Whilethe user can changetheir preference exclusions at any time, it'sunlikely to be that prominent
that all of them will realise how to do so immediately.

42

Chapter 6. The User Interface Toolkit

Introducing WacsUI

In this chapter, we're going to take a dlightly different tack, we're going to just look at code segments
you could choose to include within your application, primarily user interface components taken from the
User Interface toolkit, WacsUI. This is not going to be an exhaustive review of what is available as that
iscovered in detail in the reference section, Chapter 9, WACSAPI: User Interface Module. Instead thisis
just aquick taster of just afew of the calls provided by the WacsUI toolkit.

So far we've been dealing with the various routines that are provided by the Core Wacs module - and these
relate primarily to configuration parameters and security. There is a second module available for you to
use called WacsUI, the WACS User Interface Toolkit. This concernsitself primarily with providing utility

functions to ease the tasks of formatting and preparing data from the database into a form more suitable
for usein web pages.

Including WacsUI support

To include support for the WACS User Interface (WacsUI) toolkit within your application, you need to
add the following extra lines to your code, ideally just after the Wacs core module.

Example 6.1. WacsUI initialisation

requi re_once "wacsui.php";
$wacsui = new WacsUl ;

and here's the perl dialect of the same activity...

use Wacs: : WacsUl ;

Note

NB: From Wacs 0.8.6, the WacsUI module now livesin a Wacs sub-directory and so needs
to be called as Wacs::WacsUI instead of just WacsUI .

WacsUI: DescribeHer

Thefirst function from WacsUI that we're going to look at is called describeher and it is designed to take
the output of the very regemented values of the model attributes fields of the database and turn them into
something much more readable. Although not implemented yet this provides agood mechanism for doing
other trandlations or providing an attribute table rather than a textual description.

Example 6.2. Using WacsUI : describeher

43

The User Interface Toolkit

print $wacsui - >descri beher (
array('hair'=>$results[4],

"l ength' =>resul ts[5],

"titsize' =>results[6],

' pussy' =>resul ts[7],

"race' =>resul ts[8],

"buil d' =>resul ts[9],

"hei ght' =>resul t s[10],

"wei ght' =>resul t s[11],
‘occupation =>results[12]))."\n";

Note

We have to package up our parameter list as an array in order to pass it in Php; perl is
somewhat simpler with a simple sequence of named parameters.

print describeher (
hai r =>$resul ts[4],
| engt h=>$r esul ts[5],
titsi ze=>%resul ts[6],
pussy=>$resul ts[7],
race=>$resul ts[8],
bui | d=>$resul ts[9],
hei ght =>$r esul t s[10],
wei ght =>$resul t s[11],
occupation=>$resul ts[12])."\n";

The above example is based upon modifying the MySimple example program from in the second chapter
(Chapter 2, Basics: Getting Started) to add the following extrafieldsinto the query: mhai r, m engt h,
ntitsize, npussy, nrace, nbuild, mheight, nmneight, noccupation after the
mimage (with a comma of course) and before the from clause.

The what shedoes function

Aswith the previousdescr i beher, what shedoes isdesigned to make areadable sentence from a
number of fixed format database fields. In this case however, it's alittle different as the values passed in
aretypically either Y for yes, or N for no, and they are translated to atext phrase based upon what they're
valueis. This also means that if you're using array subscripts to fetch the database field values you need
to be careful about positioning. Give ayes to the wrong field and the error will not be as obvious - while
“blonde breasts” would be easy to spot, the fact that each model who did masturbation scenes was listed
as doing straight scenes would be less apparent.

For the purposes of this example, we're adding yet more fields to the select statement in the original
MySimple program shown in the second chapter (Chapter 2, Basics: Getting Started). Inthiscasensol o,
nmstrai ght, mesbian, nfetish, nmoys, mmast and nother.

Example 6.3. Using WacsUI : whatshedoes

print $wacsui - >what shedoes(
array('sol o' =>$resul ts[13],
" straight'=>%resul ts[14],

44

The User Interface Toolkit

"l esbi an' =>$resul t s[15],
"fetish' =>$resul ts[16],

"toys' =>%resul ts[17],

" mast ur bati on' =>$resul ts[18],
"other'=>$results[19]))."\n";

The same function works just the same in perl without the need for the array declaration wrapper:

print what shedoes(

sol o=>%resul ts[13],

strai ght =>$resul t s[14],

| esbi an=>%$r esul t s[15],

feti sh=>%resul ts[16],
toys=>$resul t s[17],

mast ur bat i on=>%resul t s[18],
ot her=>$resul ts[19])."\n";

The addkeyi cons function

Both the nodel s and set s schemas feature fields that contain a space seperated list of keywords that
mark certain attributes found within that set. These can be quickly turned into a small HTML table of
icons using the routine addkeyicons. The fields suitable for use with this are scat i nf o from the sets
tableand mat t r i but es from the models table. These are passed as the first attribute; the second being
the displayed size of the icons which for the default icons would be a maximum of 48 x 48 pixels. The
function is called simply with:

Example 6.4. Using AddK eyl cons

addkeyi cons($resul ts[16], 24, $dbhandle);

Note

In WACS 0.9.0 and later, addkeyi cons should be passed a third parameter which is
the handle to the current active database connection. The act of passing this allows the
addkeyi cons routineaccesstotheat t ri b database table which contains the extended
range of icons and the ability to add locally defined additional icons. Without this being
supplied, any of the extended and locally defined icons will appear as a broken image.

Warning
Where possible please update your existing code to pass the dbhandl e parameter as well.

The Link Family

There are three really important functions available to you within the WACS Ul API which you really
should get to know well. They will do a huge amount of legwork for you and are the easiest way to
use the extensive content caching features built into WACS since release 0.9.1. Only iconlink existed in
previous versions, and the other two thumblink and contentlink are new. In all cases these functions will
automatically fall back to using the wacsimg, wacsthumb and wacszip methodsif they can't do it smarter.

45

The User Interface Toolkit

i conl i nk: WacsUI's Most Important Function

We're now going totake alook at WacsUI module'smost important function,i conl i nk. It'sjobissimply
to display and icon with an appropriate link around it. Sounds simple enough, doesn't it? Unfortunately it
isn't - there'salot of work that needs to be done relating to permissions, access methods, checking caches
and resizing which actually makes it fairly complex. The good newsisthat thei conl i nk function will
doit all for you!

Thei conl i nk function takes quite afew argumentswhich control how it works, but they are reasonably
straightforward. In most cases parameters are optional and sensible defaults will be used instead if they
are not given - obviously things like set number and the location fields (sarea, scategory and
sdi rect ory) are necessary.

Example 6.5. Using thei conl i nk function

print $wacsui ->i conli nk(

array('type' =>$setdetail s[1],
'setno' =>$setdetail s[0],
'sarea' =>$setdetail s[2],
'scat egory' =>$setdetail s[3],
"sdirectory' =>$setdetail s[4],
' model ' =>$noddet ai | s[1],
'resize' => 0,
"silent'=>"y"))."\n";

Note

Notethesi | ent attributebeingsetto' y' - thistellsthe function not to print the result to
stdout. If yousetsil ent to' n' youdon'tneedtouseprint iconlink() youcan
just call i conl i nk() within your code. Generally it is considered better practice to print
the return value from the function call, but with these three functions that choice is yours.

The perl dialect is again very much the same:

print iconlink(type=>$setdetail s[1],
set no=>$set detai | s[0] ,
sar ea=>$set det ai | s[2],
scat egory=>$set det ai | s[3],
sdirectory=>$set detail s[4],
nodel =>noddet ai | s[1],
resize=> 0,
silent=>"y'"))."\n";

Using the t hunbl i nk function

Thet hunbl i nk function worksvery muchthesameasi conl i nk doesand provides away to produce
thumbnail images from aphotoset or any of anumber of additional iconimages (typically thumbnailsfrom
amovie) for avideo clip. It isdightly different fromi conl i nk in that since the cache of set thumbnails
is organised by set number and not area, category, etc, it needs on the set number, image number and type
to function.

46

The User Interface Toolkit

Example 6.6. Using thet hunbl i nk function

print $wacsui - >t hunbl i nk(
array('setno' =>$setdetail s[0],
'stype' =>$setdetail s[1],
"i mgno' =>$i ngnunber ,
'resize' =>1,
"silent'=>"y'))."\n";

And of course using it in Perl is much the same:

print thunblink(setno=>$setdetail s[0],
stype=>$setdetail s[1],
i mgno=>$i ngnunber,
resi ze=>1,
silent=>"y")."\n";

Using the cont ent | i nk function

The final one of the three link functions, again joining the WACS API reportoire in release 0.9.1, is
content | i nk. Once again this is similar to t hunbl i nk in not needing the full path within the
collection as the cache mechanism it refersto is organised by set number. Aswith the other two members
of the link family, it falls back gracefully to the old methods of content delivery if it cannot find a cached
version of the desired content, so you can and should use it at al times for content link delivery.

As usual we specify both the set number and the set type, plus you also have the option by using the
si | ent parameter asto whether it should print out the link text it creates or merely return the necessary
text as the return variable from the function call. It's also good practice to specify the desired name for the
downloadfileusingthear chi ve parameter. Normally this name can simply be taken from the sdownload
field in the sets database. If this variable is empty, it will default to set 1234. zi p or set 1235. wnv
as appropriate.

We do usualy specify the srank parameter too, athough it will function without it, to clarify the
relationship of this set to other things. The ext (for extension) is the file name extension of thisfile - ie
.zip, .wn, .novand.npg .Asshown intheexamplebelow, passing thescodec field from
the database via the getvideoext function should work right for videos.

The one rather odd parameter here is serve - this specifies which type of file you would like on those
occasions where there is a choice. For some sets, the cache system holds both an original version and a
compilation or edited version comprising either the combination of a number of seperate parts of a video
clip, or avideo clip with the leading declarations trimmed so as not to disturb the viewing experience. In
these cases, if you want the compilation or edited version where are available, you set serveto cooked
and where you want the vanilla unaltered file you set serveto raw.

Example6.7. Using thecont ent | i nk function

print $wacsui->contentl i nk(
array('setno' =>$setdetail s[0],
'stype' =>$setdetail s[1],
'srank' =>$setdetail s[2],

47

The User Interface Toolkit

ext' => $wacsui - >get vi deoext ($setdetail s[3]),
serve' =>' cooked',

archi ve' =>$set det ai | s[4],

silent'=>"y"))."\n";

Asusual, the perl dialect version of thiscommand isamost identical in how you call it:

print contentlink(setno=>$setdetail s[O0],
stype=>$setdetail s[1],
srank=>$set detai | s[2],
ext => getvi deoext ($setdetail s[3]),
serve=>' cooked',
ar chi ve=>$set detai | s[4],
silent=>"y")."\n";

Note

The content cache, unlike the icons or thumbnail caches, isNOT self-maintaining. Y ou need
to take actions to create the cached versionsin thefirst place - please see the administration
manual for more information about how to use wacscachect! to do this

WacsUI: Other Functions

Another example of using the wacsui module can be found in the newsets.php application in the samples
directory. Thisisamore "real world" worked example showing a new releases index page; it makes use
of both the iconlink and addkeyicons functions.

Detailed documentation on each call available and how it works can be found in the API reference section
Chapter 9, WACS API: User Interface Module. Another good source of examples of how to utilise these
functions is to be found in the the section called “Wacs-PHP: The Simple Skin” provided as part of the
Wacs-PHP API library. And of course don't forget that you can always look at how the main WACS user
environment applications themselves make use of these functions.

Conclusions

Weve now come to the end of the basic WACS API tutoria, at least for this edition of the WACS
Programmers Guide. It is our intention to expand this section in future editions. Still, it has hopefully
introduced you to the key concepts in making use of the WACS Programming APl and given you some
useful simple programs to build on when creating your own applications. The rest of this book consists
of the WACS API reference manual and the WA CS Database Schema Reference. If these do not provide
sufficient information, please contact us via the methods listed on the WACS web site at SourceForge
[http://wacsip.sourceforge.net].

48

http://wacsip.sourceforge.net
http://wacsip.sourceforge.net

Chapter 7. Wacs-PHP: The Skins
Introduction To PHP Skins

In previous chapters we've mentioned that the WACS Application Programming Interface (APl) is
available in both Perl and PHP5. We've also mentioned that many commercial web sites will choose to
design their own web pages and will make use of the extensive WA CS database infrastructure and utilities
viathe API from such pages. Other people may simply be interested in using it to tailor the presentation
of their WACS siteto their personal preferences.

With the Skins project, we go a step further by providing an alternative WACS-based web site written
using the Wacs API for PHP5. This can serve one of two purposes - to provide a more complex set of
example programs for web designers to study in order to familiarise themselves with how the APIs are
used, or it can simply be restyled and personalised to provide aturn-key porn web site quickly and easily.
In due course we hope people will contribute some sample pages of their own and there may be a choice
of componentsto make the process easier. Initially we are providing just one skin known assimple. Toaid
both understanding and the ease of restyling, the Simple Skin isimplemented using an external cascading
style sheet separate from the HTML output generated by the php programs.

Note

The Wacs-PHP Simple Skin is still very much an under development project and only just
became fully functional at 0.8.5. Y ou can always dive in and help us make it even better!

Wacs-PHP: The Simple Skin

The provided simple skin consists of a number of small PHP5 programs and a single large style sheet
shared by all the applications. The php programs are:

Table 7.1. Simple Skin: Components

Name Description

index.php The main menu of the simple skins site - equivalent to wacsfp in WACS itself

latest.php The simple skins combined new models, new sets and new videos page - no
direct WACS equivalent

girliephp The model page of the simple skins site - very loosely equivaent to
wacsmpthumbsin WACS itself

directory.php The Alphabetic directory of models - similiar to just one of the modes of
wacsmodelthumbsin WACS itself

galleries.php Theindex of galeries - arather different approach from wacsshow in WACS

itself. Focuses on indexing all the entries in a given top level area (sarea); to
index the toplevels themselves, use movies.php below.

gallery.php An individual gallery display - similiar to that produced by wacsimglist in
WACS itsdlf.

movies.php A top level view of the galleries. Works for either images or videos despite
the name.

49

Wacs-PHP: The Skins

Name Description

photos.php A photo set front page - similiar to wacsindex in info mode.

videos.php The video clip version of the above.

sear ch.php The search system for the ssimple skin. This takes a very different approach
from the search system in WACS core as it amalgamates both model and clip
attributes into a single search engine.

Styling Wacs-PHP Skins

One of the design objectives of the Wacs-PHP skins project was to make it easy to restyle the pages to
look very different without touching the code itself purely through use of Cascading Style Sheets. To this
end each page has alarge number of named <div> and directives placed throughout the generated
pages to provide aframework for this to happen.

The first of these is that every page has a standard core structure to it which consists of three div
elementswith thefollowingids: pagebanner for thetop heading, navi gat i on for the menu linksand
mai ncanvas for the content itself. They will also always be featured in this order. Y ou can of course
choose to make them invisible or use javascript to toggle their visibility to make pull down menus and
thelike.

In addition to the core layout detailed above, there are also a number of div classes (because they
often repeat) that are set on each type of icon that may be displayed. For set-based content, these are
nor mrovi et i | e andnor m maget i | e for regular standard sized icons and for the smaller ones (but
which are used heavily in the simple skin) i magesettil e and movi esetti | e. For generic styling
of the small icons there isaso a span class of mi ni i con around theicon itself.

Moving onto Models, heretoo thereare standard div wrappersaround all instances of model iconsallowing
them to be styled. For the normal model headshot icon, thereisadiv of classmmodel ti | e aroundtheicon
block itself, with spansof classesi connbdel andi connodel nane around theiconitself and the text
of her name respectively. Around the large model headshot you will find a div with theid of headshot
inthe girlie.php program which is the only place that Wacs-PHP uses the large format headshot.

WACS and Web 2.0

There's alot of buzz in the IT industry at the moment about dynamic content on the web - al'so known
as Web 2.0. This is where the web page changes what it displays immediately with each selection that
you make. So far we've not seen much application of the technology on adult web sites, but as we rather
pride ourselves on having the capabilities of the very best, we decided to go ahead and prove we can do
it with WACS. The modelsel.php application introduced in WACS 0.8.4 is the first example of this. This
application simply displays various icons related to hair colour, length, breast size, pubic hair style and
now in Wacs 0.8.6 we've added complexion, body type and other attributes to it. Asyou click on these,
the page updates with a selection of headshots that match the specified criteria.

The modelsel.php application itself is fairly simplistic and it's use of the underlying AJAX architecture
has been re-engineered in Wacs 0.8.6 to make more effecient use of the AJAX system. We think it's an
interesting and ground breaking application and plan to do something similar for sets. We've also used
it as a showcase of how redlitively easy it is to integrate php-based applications into the main perl based
Wacs infra-structure as it shares the look and fedl of the perl based apps.

50

Wacs-PHP: The Skins

We do intend to expand on this theme in coming releases with similar dynamic search mechanisms for
image sets and videos.

51

Part |I. WACS API
Programming Reference

Thisisthe API (Application Programming Interface) reference manual for the WACS environment. It documents the
main API calsin both Perl and PHP dialects. There are now six operational modules available as part of the WACS
system, plus a utility module used by the installers.

Table2. TheKey WACS Modules

WACSModulelList

name part of description
Wacs.pm Core the main Wacs module
WacsUl.pm Core the Wacs User Interface module
WacsStd.pm Core the Wacs Standardised Components module
Wacsl D.pm Core the Wacs Identification module
wacs.php wacs-php the main Wacs module, Php dialect
wacsui.php wacs-php the Wacs user interface module, Php dialect

Note

From Wacs 0.8.6 the perl WacsUI, WacsStd and Wacsld modules have been relocated into a Wacs
subdirectory for greater clarity and so now need to be used with WAcs: : prefixes.

Chapter 8, WACSAPI: Core Module

Chapter 9, WACSAPI: User Interface Module

Chapter 10, WACS API: Sandard Components Module
Chapter 11, WACSAPI: Identification Module

Chapter 12, WACSAPI: Downloading Module

Table of Contents

8. WACS APL: COre MOUUIE ...ttt et e e e et eeees 54
Core MOOUIE: SUMMBIY ...ceetieeeii ettt e e et e e et eeene s 54
Core ModUIE: REFEIENCE ..ot 54

9. WACS API: User Interface MOAUIEcciiiiieii e 82
User Interface ModUlE: SUMMENYcooeuuiiiiiii ettt 82
User Interface Module: REFEIENCEiiiiiiiieiii e e 82

10. WACS API: Standard ComponentS MOAUIEuuiiiiiiieiiii e 104
Standard Components Module: SUMMENYeeieiieeiiii e 104
Standard Components Module: REFEIENCEuviiiiiiiiiiii e 104

11. WACS APIL: 1dentification MOQUIEcooouuiiiiiii et 129
Identification MOdUIE: SUMMENYuuuiiiiiiieiiii ettt e e 129
Identification Module: REFETENCEcoouiiiiii e 130

12. WACS APL: Downloading MOTUIEoiiiiiieiiii e 135
Downloading Modul€: SUMMIAIYc..uuiiiiii ettt e e e e e e ene e e 135

53

Chapter 8. WACS API: Core Module

Core Module: Summary

Table 8.1. Function Summary: Core Module

function description

read_conf locate and read the XML based configuration file
check_auth check that thisis an authorised access

auth_error report an authentication error and suggest remedies
auth_user return the registered username for this 1P

add_auth add a new authentication token to access control system
update _auth update the external content cache .htaccessfiles

find_config_location

try to locate the specified XML config file

conf_get_attr get the requested configuration attribute

conf_dosubs do substitutions for the standard wacs configuration variables
auth_get_attr get the requested access control list attribute

dberror produce a more helpful error page when db connections fail
gettoday get today's date as a string suitable for the current DB
timecomps break a date down into component parts

cacheloc provide expected location of the cache files for specified set
vendlink provide alink to the vendors site

loadattrvalues load attribute values from the database

getvaluename takes a single character flag and converts to string

geticonlist getstheicon array for the specified object type

gettypecolour get the prevailing colour scheme for the set type

divideup make a directory name more readable

checkexclude check for this file name being one to ignore/hide

checkindex check for what might be an index file

makedbsafe try to make the returned string safe for use in the database
addheadercss add standard preamble to enable javascript menus
setgroupperms set the appropriate group permissions for co-operative updating
treemkdir create atree of directories (mkdir -p equiv)

Core Module: Reference

Core Module: Reference

WACS API: Core Module

The following pages contain the *nix style reference pages for each function call in the WACS core
module. These detail what the function does, what parameters it takes, what it returns and which versions
of the core library itisavailablein.

55

WACS API: Core Module

Name

read_conf — read Wacs core config modules
Synopsis
use Wacs,

read_conf

Summary

Ther ead_conf causes the standard WACS XML configuration file, wacs. cf g to be parsed and the
contentsread into internal memory structures in the WACS modulefor later use by other WACS routines.
The main interface to accessing thisinformationisthecall conf _get _attr.

read_conf is senstive to the environment variable WACS_CONFI G which specifies a directory
containing an alternativewacs. cf g configuration file.

Availability

r ead_conf isavailablein both perl and php.

56

WACS API: Core Module

Name

check_auth — check if this |P address is authorised for access
Synopsis
use Wacs,

check _auth(i p_address, vocal error);

scal ar i p_address;
scal ar vocal _error;

Summary

check_aut h checks whether the passed |P address is authorised for access to this Wacs server at this
time. Thisauthorisation may be by either permanent or |ease permission based upon the calling |P address.
This|P addressis specified by the first parameter to the function. The second parameter controls what will
be done about it: if the valueis 0 (zero), the call will merely terminate the session by exiting the program;
if thevalueis 1 (one), an authorisation error HTML page will be displayed offering the user the option to
log in. In the Perl version, an additional option of 2 (two) is available which outputs a failure icon in the
case of an expired lease and a request for an image file - thisis not possible in PHP as the content type
of text/html has already been determined.

Availability

check_aut h isavailablein both perl and php.

57

WACS API: Core Module

Name

auth_error — create areasonable HTML error page with reason and link to remedy

Synopsis
use Wacs,
aut h_error(nessage);

scal ar nessage;

Summary

aut h_error creates areasonable HTML error page with reason and link to remedy if applicable (ie
login page). The message parameter will be placed in a bordered box near the bottom of the message and
can be used to convey additional information. check _aut h setsthistoSorry, your | ease has
expi red. whenthat isthe case.

Availability

aut h_err or isavailablein both perl and php.

58

WACS API: Core Module

Name

auth_user — return the account name of the user associated with |P address

Synopsis
use Wacs;
scal ar aut h_user (i p_address);

scal ar i p_address;

Summary
aut h_user returnsthe account name of the user associated with the specified | P address.
Availability

aut h_user isavailable in both perl and php.

59

WACS API: Core Module

Name

add_auth — add a new authentication token to the access control list

Synopsis

use Wacs,
add_auth(...);
Parameters
parameter description
ipaddr The IP Address of the host being authorised.
user account name of the user being registered
type type of registration being undertaken - currently | ease
role leval of access granted currently: vi ewer, power oradni n
date date at which this lease should expire
prefexcl preference exclusions: the scatflag values not to be shown by default
usedirect whether to use the usedirect function if supported by the server - can beyes
or no
imagepage whether to create links to framed page or raw ones - should bef r ame or r aw
scaling whento useimagescaling - canbenone, slide, slide+pageandal |
size size of scaled images when applicable in the format 1024x768
quality jpeg quality setting used when scaling images
delay desired delay before next image in slideshow
Summary

add_aut h adds a new authentication token to the access control list, ie the leasesfile. Thisisthe action
taken by the wacslogin command after it has authenticated the user. It can also be used to update the user
preferences - it is used by wacslogin, wacspref and wacsl ogout.

Availability

add_aut h is currently available only in perl. A php implementation is possible in a future release if
required.

60

WACS API: Core Module

Name

update_auth — update the external content cache .htaccess files

Synopsis

use Wacs,

scal ar update_auth(...);

Parameters

parameter

description

source

The comma seperated list of files to use for deriving the auth information
- if not specified, defaults to the wacs.acl permanent file and the leases.acl
temporary leasesfiles.

dest

The comma seperated list of directories in which to place the generated
authorised IP addresses list. If not specified, it checks the configuration
variable cachelist in the security section of the configuration file, and if that's
empty, it finally uses the values for contenti and contentv in the f sl oc
section.

format

The desired output format - a present the only acceptable value is
apache2_ht access (which is the default) but other options might be
availablein future.

Summary

The update_aut h function reads the current values in the authorisation files and writes
suitable .htaccess files into the top level of the content cache directories to allow direct HTTP access to
the content cache to authorised users.

Availability

The function updat e_aut h is only available in perl as al authorisation update functions are currently
offered only in perl, and is only available in WACS 0.9.1 and higher.

61

WACS API: Core Module

Name
find_config_location — return the location of the requested config file

Synopsis
use Wacs,

scalar find _config |ocation(configuration filenane);

scal ar configuration_filenaneg;

Summary

find _config_| ocati on returnsthelocation of the requested config file. It first checksthe directory
specified by the WACS CONFI G environment variable, and then tries the built-in list of possible WACS
configuration file locations. Thislistisnormally: / et ¢/ wacs. d, then /usr/ | ocal / et c/ wacs. d
and finally / opt / wacs/ et ¢/ wacs. d . If the specified file is not found in any of these locations, a
null string is returned.

Note
Thelocation specified by the environment variable WACS _CONFI Gtakes precidence, if and

only if the requested file is present there. The normal directories are searched afterwards if
the fileis not found in the directory specified.

Availability

find_config_|l ocati onisavailablein both perl and php.

62

WACS API: Core Module

Name
conf_get_attr — get the specified attribute from the config file values
Synopsis
use Wacs,
scal ar conf_get _attr(configuration_section, configuration_ attribute);

scal ar configuration_section;
scal ar configuration_attribute;

Summary

conf _get attr returnsthe specified attribute from the config file or it's default value if not specified
there. The WACS configuration files are divided into a number of logical sections; the first parameter
specifies which of these is required: amongst those defined are dat abase, tables, fsloc,
server, security, download, colours, |ayout, precedence anddebug. Please
see the WACS configuration guide and sample wacs.cfg files for more information on what information
isavailable.

Availability

conf _get _attr isavailablein both perl and php.

63

WACS API: Core Module

Name

conf_dosubs — do substitutions for the standard wacs configuration variables

Synopsis
use Wacs,

scal ar conf_dosubs(...);

Parameters
parameter description
string The string on which the substitutions should take place.
options For passing in the options passed to the routine when called, will be sustituted
for #OPTI ONS# within the configuration string.
optdesc For amatching description for the above, will be substituted for #OPTDESC#
within the configuration string.
Summary

The conf _dosubs function makes substitutions for the standard wacs configuration variables within
configuration files. It is used by various function calls within the WacsUl module including the menu
handling functions, generalised from the previous nenu_dosubs function. It isfunctionally compatible
with menu_dosubs soif you did make use of the original (private) function, you can use this as a direct
replacement.

In addition to substituting #OPTI ONS# and #OPTDESC# with the matching parameters, it will
also substitute the appropriate variables from the configuration files: #BASEURL#, #CGd URL#,
#1 CONURL#, #SI TEURL#, #WACSURL#, #WACSMVAI N#, #WACSALLM¢, #WACSMODP#,
#WACSMIHU# and #NEWPERI OD#.

Availability

conf _dosubs isonly availablein Wacs 0.9.0 and later and is available in both perl and php.

WACS API: Core Module

Name
auth_get_attr — get the specified attribute from the authorisation file values

Synopsis
use Wacs,
scal ar auth_get attr(ip_address, authorisation_ attribute);

scal ar i p_address;
scal ar authorisation_attribute;

Summary

aut h_get _attr returns the specified attribute from the authorisation file or it's default value if not
specified there. These look ups are based on the | P address of the host - typical attributes include the user
name, the preference exclusions, the role, and the various preference settings - see add _auth for more info.

Availability

aut h_get _at tr isavailablein both perl and php.

65

WACS API: Core Module

Name

dberror — produce a more helpful error page when db connectionsfail

Synopsis

use Wacs,
dberror(...);
Parameters
parameter description
header Whether to add an HTML preamble or not; n for no, y for yes.
message The message the end-user should recieve
error The error message returned from the database routines; logged in the web
server error log
dbuser The database user account with which the access was being attempted, from
the config filesdbuser entry.
dbhost The host specification of the database that it was trying to access, from the
config file'sdbi connect entry when using perl, and the phpdbconnect
entry when using PHP
Summary

The dber r or function provides a detailed and hopefully helpful error message when the WACS sub-
system cannot connect to the database server. It also logs details of the failure to the web server error log.

Availability

dberror isavailablein both perl and php. It was introduced in Wacs 0.8.1.

66

WACS API: Core Module

Name

gettoday — get todays date and various relations thereof

Synopsis

use Wacs,

scal ar gettoday(...);

Parameters

parameter

description

format

which format to return date in (DD- MON- YYYYY or YYYY- M\t DD) - default
is native format for the current database

epoch

the actual date to convert in Unix seconds since 1970 format.

offset

number of days different from today - assumed to be historial if postive, future
if negative - thusyesterday will be 1, aweek ago will be 7, tomorrow will be-1.

Summary

The get t oday function returns either todays date or various deviations thereform - yesterday, a week

ago, two weeks ago, etc.

Availability

get t oday isavailablein both perl and php.

67

WACS API: Core Module

Name

timecomps — return seperated time components

Synopsis
use Wacs,
array tinmeconps(date_in _db format); (format);
scal ar date_in_db_format;

Summary

Theti neconps breaks a database format date up into year, month and day components. The optional
format parameter can specify a non-native date format for conversion purposes.

Availability

t i meconps isavailable in both perl and php.

68

WACS API: Core Module

Name

cacheloc — provide the expected location of the cache files for specified set
Synopsis

use Wacs,

scal ar cachel oc(setno, prefix, filetype);

scal ar setno;
scal ar prefix;
scal ar fil etype;

Parameters
parameter description
set no The set number
prefix The pathname to prefix on the destination to be checked
filetype Thetype of filetolook for - can be afiletypelikejpg, or oneof / ,: or?. The
| checksfor adirectory, : checksfor adirectory (like/) but only returns a
relative rather than absolute reply (suitable as a web URL component), and ?
returnswhat it should bewith no actual extistencetest performed. Alternatively
it can be afiletype such aswnv orj pg or similar for acontent file.
Summary

The cachel oc function reports on the presence of a cache file of the type specified. Thisalso can bea
directory if the specified file typeis"/", ":" or "?".

Availability

The function cachel oc was introduced in Wacs 0.9.1 and is not available in earlier versions. It is
available in both Perl and Php.

69

WACS API: Core Module

Name

vendlink — provide (if possible) alink to the vendor's site for this model

Synopsis

use Wacs,

scal ar vendlink(...);

Parameters
parameter description
vendor the vendor's reference (ie their vsiteid)
page which page to get: valid options are di rect ory, nodel page, bi o,
vi di ndex, vidpage, ingpage, altpage, orsignup .
name the model's name
key the model's key for this site
atkey the modédl's alternative key for this site
setkey the setkey if this request needs it (depends on the value of page above
sessionkey the session key (if required and known).
modelno the WACS model number for this request (believe me we occasionally need
this)
setno the WACS set number for this request (see above - this too)
dbhandle current handle to the database connection
Summary

Thevendl i nk provides (if possible) alink to a page on the vendor's site for this model or set. Specify
the page you require using the page parameter - can link to any one of the many pages the vendor database
knows about.

Availability

vendl i nk isavailablein only in perl at present. If you need it in PHP, please put in areguest for it on
the sourceforge tracker.

70

WACS API: Core Module

Name
|oadattrvalues — load attribute values from the database

Synopsis
use Wacs,

scal ar | oadattrval ues(...);

Parameters
parameter description
type specifies the context of the attribute values to be returned - the common two
are set s or nodel s athough a number of others for general searching
(set sear ch and nodsear ch) and detailed searching (set detai | and
noddet ai |) are also supported. Fields within the attributes schema specify
which attributes should be included within results for each of these requests.
dbhandl e The handle to the active database connection to be used for the queries needed.
Summary

Thel oadat t r val ues returnsan hash (or array with a phanumeric keys) containing attribute keywords
and their corresponding icons. This replaces the older static list of attributes with a dynamic and
configurable mechanism drived from the database itself. Normally the keys themselves are keywords and
the values are the corresponding icon name.

Availability

| oadat t r val ues isavailablein both perl and php and wasintroduced in Wacs 0.9.0 - it was not present
prior to that release.

71

WACS API: Core Module

Name

getvaluename — provide the long name for the specified value of specified type

Synopsis
use Wacs,

scal ar getval uenane(...);

Parameters

parameter description

object The object you want the mapping for - see geticonlist below

value The value you want mapped to it's long format (often a single character.
Summary

The get val uenane function returns the long (readable) name for the specified short value of specified
fixed values attribute type. For instance, if you want to get the long name for type "M", you call
get val uenane with obj ect =>"types" and val ue=>Mand get val uenane will return
Mast ur bat i on.

Availability

get val uenane isavailablein both perl and php.

72

WACS API: Core Module

Name

geticonlist — return the array of attributes to filename/long name mappings.
Synopsis

use Wacs,

hashref geticonlist(requested object);

scal ar request ed_obj ect;

Summary

Thegeti conl i st function returnsan array/ hashref of the legal valuesfor the requested type object. In
some cases thiswill be the filenames of theicon for the attributes; in other casesit'll be the single character
legal values and their long form names. Valid requestsinclude: nodel s, sets, types, nedia,
dst at us, regions, flags, pussy, build, rankandpi con, hicon, ticon, bicon.

Availability

geticonli st isavailable in both perl and php. The pi con attribute was added in Wacs 0.8.2. The
bui | d and bi con attributes were added in Wacs 0.8.6. Ther ank attribute was added in Wacs 0.9.0.

73

WACS API: Core Module

Name
gettypecolour — return the background colour for this type of set

Synopsis
use Wacs,
scal ar gettypecol our(set_type);
scal ar set _type;

Summary

Theget t ypecol our returnsthe HTML colour specification for the background of the current set type.
Passit the set stypevaluel , V, etc.

Availability

get t ypecol our isavailablein both perl and php.

74

WACS API: Core Module

Name
divideup — make Camel-style text more readable and add HTML markup

Synopsis
use Wacs,

scal ar divideup(original text, divider, already small_font);

scal ar original text;
scal ar divider;
scal ar already_smal | _font;

Summary

Thedi vi deup function returns a more readable version of the so-called Camel Style wording used in
creating WACS directories. It also embeds HTML directivesto try and ensure that even long entries don't
take up too much space. The first argument is the original text (typicaly the field stitle from the sets
database), the second (divider) istypically the HTML break tag
 but could be other thingslike atable
divider sequence </ t d><t d> . The third parameter signifies whether the font in use is already small -
if set to 0 (zero), HTML tagsto reduce the font size be based on using sizeis-1 for long lines; if it's set to
1 (one) it'll be assumed they were already using sizeis -2, and will therefore use size = -3. Asfrom Wacs
0.8.5, -1 is also available which suppresses the resizing of long linesif required.

Availability

di vi deup isavailablein both perl and php.

75

WACS API: Core Module

Name

checkexclude — test for being adirectory file or other reserved purpose name

Synopsis
use Wacs,
scal ar checkexcl ude(fil enane);
scal ar fil enane;

Summary

Thecheckexcl ude returns 1 if the file is one of those that should be excluded from consideration (ie
. or.. oroneof ourslike. i nf o or. unpack). If thefilelooks genuine, returns 0.

Availability

checkexcl ude isavailable only in perl asit isjust used for collection management tasks.

76

WACS API: Core Module

Name

checkindex — try to guess if thisis an index image file

Synopsis
use Wacs,
scal ar checki ndex(fil enan®e);

scal ar fil enamne;

Summary

The checki ndex triesto guessif agiven file name s likely to be an index file or aregular image file
based upon it's name. If it'saname associated with index files, it returns 1; if itisn't checki ndex returns
0.

Availability

checki ndex isavailablein only perl asit isreally only appropriate to collection management tools.

77

WACS API: Core Module

Name
makedbsafe — try to make the returned string safe for use in the database

Synopsis
use Wacs,

scal ar nmakedbsafe(...);

Parameters
parameter description
string the string of text to be considered
alow charactersto allow which are not normally acceptable: at present only forward
dlash (/) isrecognised
deny charactersto deny which are normal acceptable: at present any space character
(space, tab, newline) given here will cause any whitespace characters to be
stripped out.
Summary

The makedbsaf e function is designed to remove characters which are unsuitable for feeding to the
database. It normally works with a default set of rules, which implicitly disallows forward slash (but this
can be explicity allowed with al | ow=>' /'). Similarly white space can be removed from a file name
when required using the deny option.

Availability

makedbsaf e isavailable in both php and perl. This function was added in Wacs 0.8.1.

78

WACS API: Core Module

Name
addheadercss — prints out the header cascading style sheet preamble

Synopsis
use Wacs,
addheader css(css_preanbl e_type);

scal ar css_preanbl e_type;

Summary

The addheader css prints out the required css preamble to support the appropriate pull down menu
system. At present only one type, "csshoriz" is recognised, but additional options can be added.

Availability

addheader css isavailable in both perl and php.

79

WACS API: Core Module

Name

setgroupperms — set group permissions to allow both command line and web management of sets.

Synopsis
use Wacs,

set groupperns(...);

Parameters
parameter description
target pathname of the file or directory to update
group the unix group to set permissions to (usually wacs, can be obtained with
conf_get attr onsecurity ->adm ngroup.
mode access mode that should be set - typically ug+r wx.
Summary

Theset gr oupper s function setsthe group permissions on the specified fileto allow updating by both
command line tools and the web interface. This is typically done by making all files group-writeable to
thewacs group of which both apache and the approved WA CS administrative users should be members.

Availability

set gr oupper ns isavailableonly in perl asit is used only for collection management tasks.

80

WACS API: Core Module

Name

treemkdir — Makes a descending tree of directories (equivalent to the mkdir -p command) which includes
callsto setgroupperms.

Synopsis
use Wacs,

treenkdir(...);

Parameters
parameter description
origin The topleve directory from which to start - thisisrequired to already exist.
path The path below the toplevel directory given above to be created (or partialy
created as necessary)
Summary

Thet r eenkdi r functionistheequivalent of the-p option to themkdir command which isnot supported
by theinternal mkdir call of perl. It makes each element of the path it is asked to makeif it does not already
exist. Thisis part of the effort to reduce the dependency on the system call to unix shell commands within
WACS. Each directory created has it's permissions set using set gr oupper 1rs.

Availability

t reenkdi r isavailableonly in perl asitisused only for collection management and infrastructure tasks.

81

Chapter 9. WACS API: User Interface
Module

User Interface Module: Summary

Table 9.1. Function Summary: User Interface Module

function description

describeher tries to make a sensible sentance out of model data
whatshedoes describes the kind of sets this model appearsin

addkeyicons makes alittle HTML table with the attribute icons
addratings makes alittle HTML table with the set ratings

addlinks add standard top-of-the-page menus

iconlink build alink around the icon for this set

contentlink build alink to the content download (cache or wacszip)
thumblink build alink to a specific thumbnail of a set image or video thumbnail
alsofeaturing find and list any other models featured in this set
addrelicons adds a small table containing icons from related sets
addconticons adds icons from the continuation setsin alittle box
read_menu read the XML menu files and create menu record structure
menu_get_default get the default link for the menu title

menu_get _title get the menu title itself

menu_get_body get the body of the menu

menu_get_entry get asingle entry from the menu

menu_get_handler get the webapps name to handle a datatype

getrelated get information on sets related to the set number given
getvideoext returns the file name extension for the video format specified

User Interface Module: Reference

The following pages contain the *nix style reference pages for each function cal in the WACS User
Interface module. These detail what the function does, what parametersit takes, what it returns and which
versions of the WacsUI library it isavailablein.

82

WACS API: User Interface Module

Name

describeher — tries to make a sensible sentance out of model data
Synopsis

use Wacs,

use Wacs::WacsUI;

scal ar describeher(...);

Parameters

parameter description

name Her name

hometown Where she says she's from - might be place of birth or current home

country The country she comes from

age Her reported age

ageyear The year in which that age was given

hair The colour of her hair

length Thelength of her hair

titsize The size of her breasts

cupsize The cupsize of her breastsif known

pussy The usud style of her pubic hair

labia description of her labia (New in 0.9.0)

race Her race (in broad terms)

eyes The colour of her eyes

distmarks distingishing marks - easy ways to recognise her

build her phyiscal build/body type

height her height in centimetres (NB: field not suitable for imperial values)

weight her weight in kilograms (NB: field not suitable for imperial values)

vitbust her bust measurement in centimetres

vitwaist her waist measurement in centimetres

vithips her hips measurement in centimetres

starsign her starsign if known

occupation her occupation (if stated)

aliases other names she's known by

bio any additional biography text

units override configuration file when giving units: imperia or metric
Summary

Thedescr i beher triesto make areadable biography entry out of the variousmodel attribute parameters
inthe nodel table. The result isreturned as a string.

83

WACS API: User Interface Module

Availability

descri beher isavailablein both perl and php. The fieldsnanme, honet own, country, age,
ageyear, bioandunits wereaddedin WACSO0.8.2.

WACS API: User Interface Module

Name
whatshedoes — describes the kind of setsthis model appearsin

Synopsis
use Wacs,

use Wacs::WacsUI;

scal ar what shedoes(...);

Parameters
parameter description
solo does she featurein solo sets (Y, N)
straight does she feature in straight sets (Y, N)
lesbian does she feature in leshian sets (Y, N)
fetish does she feature in any sets flagged as fetish
toys does she use toysin any of her sets
masturbation does she masturbate in any of her sets
other does she do any activites marked as other
Summary

Thewhat shedoes function takes the truth values for doing certain kinds of activities and makes it into
a descriptive sentence which is returned as a string.

Availability

what shedoes isavailable in both perl and php.

85

WACS API: User Interface Module

Name
addkeyicons — makes alittle HTML table with the attribute iconsin

Synopsis
use Wacs,
use Wacs::WacsUI,
addkeyi cons(list_of _attribute_keywords, icon_size);

scal ar list_of _attribute_keywords;
scal ar icon_size;

Summary

The addkeyi cons function takes a space seperated list of attribute keywords such as the sets table
scat i nf o field or themodelstablemat t r i but es field and prints out the associated iconsin a small
HTML table. It scalestheiconsto the specified sizein doing so.

Availability

addkeyi cons isavailable in both perl and php.

86

WACS API: User Interface Module

Name
addratings — makes alittle HTML table with theratingsiconsin

Synopsis
use Wacs;
use Wacs::WacsUI;

addratings(...);

Parameters
parameter description
overall The overall rating for the set (1 to 5)
variety How unusual the content or action of the set is
techqual The technical quality of the photography, lighting and set
size How big the icons should be: normal or small
orientation whether the table should be vertical or horizontal
title display title on table: y for yes, n for no.
Summary

Theaddr at i ngs functionissimilar to addkeyi cons inthat it outputs an HTML table with iconsin.
Inthiscaseg, it'stheratingsiconsfor each of the three main set ratings: overall, variety and techqual. It can
display the table in two sizes, with or without atitle and in a horizontal or vertical orientation.

Availability

addr at i ngs isavailablein both perl and php. This function was introduced in Wacs 0.8.1

87

WACS API: User Interface Module

Name

addlinks — add standard top-of-the-page menus

Synopsis
use Wacs,

use Wacs::WacsUI;

addl i nks(...);
Parameters
parameter description
myname name of the calling program
context general area of the current page: possible values are nodel i ndex,
nodel s, search, tags, new nmage, newi deo oradmnin
title Title of the menu (not currently used)
exclude name of link to exclude (normally this apps name so it doesn't link to itself
mode menu mode: either nor mal for old-style smpletop linemenu or csshori z
to use javascript pull down menus
options optional parameter list (array)
optdesc matching descriptions for the above
Summary

Theaddl i nks functionisageneralised interface to adding atop of the page menu - you specify ageneral
category into which the pageyou'rewriting falls, and it adds an appropriate sel ection of the standard menus.

Availability

addl i nks has been available in perl for sometime and was newly added to the php implementation in
Wacs release 0.8.4. In general, unless you're trying to create a php app that blends in with the standard
Wacstools, you'll probably want to use your own menu mechanism when using PHP.

88

WACS API: User Interface Module

Name

iconlink — build alink around the icon for this set
Synopsis

use Wacs,
use Wacs::WacsUI;

scal ar iconlink(...);

Parameters

parameter description

type set type value (1, V, etc)

Setno The set number

srank The set rank - P-Primary, S-Secondary, C-Continuation

sarea The toplevel area of the set

scategory The middle level area of the set

sdirectory The lower level area of the set

sformat The format of the file (JIPG,MPG,WMYV etc)

model The model's name - used in the alt tag in the images

resize Whether to resize or not - 0 is actual size, 1 is rescaled to standard size, 2 is
rescaled to mini size

silent Set thistoy or yes to suppress printed output

destloc Which configuration variable or URL to use for location of link destination
application - typically cgiurl for perl scripts, siteurl for php scripts, or wacsurl
for wacs GUI elements (like glyphs, javascript files or stylesheets). If afull url
starting http, it will be copied verbatim rather than looked up.

destapp The stem of the URL to link to around the icon, something like wacsindex/
page, needs to include any parameter introducers like page or seti d=

destext The extension of the URL to link to, or null, ie .html or .php. From Wacs 0.9.0
onwards this can also be none to leave it empty.

prefer Which icons to use for preference when both an official and a standard icon
are available. Set prefer to "official" to use the official icon in the generated
HTML. Introduced in Wacs 0.9.1, not available prior to that.

archive The name of thefile to be linked to when offering a download link

Summary

Thei conl i nk function displays the icon for a set at the requested size surrounded by an appropriate
link to the set concerned. In WACS 0.9.1 it now returns the string that forms the link in the same style
ascontentlinkand thunblink do. Thedefault isstill to print the output to standard out as well,
but this can be suppressed with the silent option.

89

WACS API: User Interface Module

Note

It is a future direction to make silent output the default for this function, so it is strongly
recommended that you specify the silent flag one way or the other whenever you're updating
your code.

Availability

i conl i nk isavailablein both perl and php. Thesr ank, sformat, silent andar chi ve options
areonly availablein 0.9.1 or later. Thedest | oc, dest app anddest ext optionsare only available
in0.8.1 or later.

90

WACS API: User Interface Module

Name

contentlink — provide suitable link for downloading media
Synopsis
use Wacs,

use Wacs::WacsUI;

scal ar contentlink(...);

Parameters
parameter description
setno The set number to provide
stype The type of the set to provide (1,V ,etc)
srank The rank of the set (P,S,C etc)
ext The file name extension to use (zip, wmv, mpg, €tc)
serve How to serve the file: raw - the original file, cooked - edited and combined
with any continuation files
silent Thisfunction can either return the desired link asastring and optionally print it
out. If silentissettoy or yes, thenit will ONLY be returned and not printed.
archive The name the resulting file should be delivered as - ie Jenny-12.zip. Defaults
to set12345.zip as with earlier releases of Wacs.
Summary

The contentlink function is used to create links to allow downloading of the actual content from WACS.
Thisis designed to make a determination as to whether to simply provide alink to wacszip asin previous
WACS releases, or to provide alink into the new content caching areas introduced in WACS 0.9.1.

Availability

Thecontentlink function wasintroduced in Wacs 0.9.1 to compliment the new content caching mechanism
and was not available in previous releases. It is not available in previous releases. It is available in both
perl and php.

91

WACS API: User Interface Module

Name

thumblink — build alink to a specific thumbnail of a set image or video thumbnail
Synopsis
use Wacs,

use Wacs::WacsUI;

scal ar thunmblink(...);

Parameters
parameter description
Setho The set number this thumbnail comes from
imgno Which image number to show
stype The set type (1,V, etc)
size The sizeto show it at - std, mini, etc
silent Set thisto no to print link before returning
linkto Link to afull frame version if required
Summary

Thet hunbl i nk provides links to thumbnailed versions of member images of a set. For an image set,
these are the scaled thumbnails of the images within the set itself, while for videos these are from any still
thumbnails provided for the set. It will optionally add a link around the image to any full frame or scaled
displayer application you wish to specify.

Availability

Thet hunbl i nk function was introduced in Wacs 0.9.1 and is not available in previous releases. It is
available in Perl and Php.

92

WACS API: User Interface Module

Name
alsofeaturing — look for any other models also featuring in this set

Synopsis
use Wacs,

use Wacs::WacsUI;

scal ar al sofeaturing(...);

Parameters
parameter description
Setho The set number of this set
primary The model number we already know about for this set; exclude thismodel from
the results. Leave blank if you want all models listed.
staysmall stay inasmall font - if thisis set to Y font change specifications will not cause
asize change.
destloc thelocation of the destination application for thelink. Thisdefaultstocgi ur |
but can be baseur | or any of the url configuration values.
linkto which wacs application to link to (assumed to bein cgi-bin). If thisendsin an
equals sign (=) no slash will be added between the application hame and the
modelno. This allows modelno= and L= style arguments.
skipbr tellsthe function not to output HTML breaks around the output it creates. This
canbefirst orall asrequired.
dbhandle current handle to the database connection
Summary

The al sof eat uri ng function returns a list of models featured in this set along with links to an
appropriate WACS application.

To aid CSS styling there is a span directive with aclass of al sof eatti t| e around the Featuring or
Also Featuring title output, and another with aclass of al sof eat nodel around each model link output.

Availability
al sof eat uri ng isavailablein both perl and php (from release 0.8.5); only in perl in the releases prior

tothat. It was moved to WacsUI in release 0.8.5 from the core Wacs module. Theski pbr anddest | oc
parameters were added in Wacs release 0.8.5.

93

WACS API: User Interface Module

Name

addrelicons — adds a small table containing icons from related sets

Synopsis

use Wacs,

use Wacs::WacsUI;

scal ar addrelicons(...);

Parameters

par ameter

description

setno

The set number of this set

stype

The type of this set

sformat

The format of this set - mostly useful for videos

layout

How to layout the resulting output - specify t abl e for HTML table, di v for
appropriate DIVsfor CSS formating.

size

Size of theicons to use - mini, std, etc.

perrow

Specifies how many icons should be included in each row of the table when
displaying continuation icons (see addconticons below)

destloc

Which configuration variableto use for location of link destination application
- typically cgiurl for perl scripts, siteurl for php scripts, or wacsurl for wacs
GUI elements (like glyphs, javascript files or stylesheets)

destapp

The stem of the URL to link to around the icon, something like wacsindex/
page, needs to include any parameter introducers like page or set i d=

destext

The extension of the URL to link to, or null, ie .html or .php. From Wacs0.9.0
onwards this can also be none to leave it empty.

destinfo

The stem of the URL to link around a link to more information, something
like wacsindex/info, needs to include any parameter introducers like page or
setid=

dbhandle

Handle to the current database connection for query

Summary

The addr el i cons function returns the HTML to generate a small table with icons with hyperlinks
for duplicate and/or continuation sets. It arranges the duplicate sets it rows, adding any appropriate
continuation icons within each row as needed. It callsthe function addcont i cons to produce each row
of icons. Various optional parameters control how thisHTML segment is generated.

Availability

addr el i cons isavailable from Wacs release 0.9.0 onwards in both perl and php. It was not available

prior to this release.

94

WACS API: User Interface Module

Name

addconticons — adds a small table containing icons from continuation sets
Synopsis
use Wacs,

use Wacs::WacsUI;

scal ar addrelicons(...);

Parameters

parameter description

Setho The set number of this set

stype The type of this set

sformat The format of this set - mostly useful for videos

layout How to layout the resulting output - specify t abl e for HTML table, di v for
appropriate DIVsfor CSS formating.

size Size of theiconsto use - mini, std, etc.

perrow Specifies how many icons should be included in each row of the table

|abel Overrides the default part label if it does not contain an empty string.

destloc Which configuration variableto usefor location of link destination application
- typically cgiurl for perl scripts, siteurl for php scripts, or wacsurl for wacs
GUI elements (like glyphs, javascript files or stylesheets)

destapp The stem of the URL to link to around the icon, something like wacsindex/
page, needs to include any parameter introducers like page or set i d=

destext The extension of the URL to link to, or null, ie .html or .php. From Wacs0.9.0
onwards this can also be none to leave it empty.

destinfo The stem of the URL to link around a link to more information, something
like wacsindex/info, needs to include any parameter introducerslike page or
setid=

dbhandle Handle to the current database connection for query

Summary

Theaddcont i cons function returnsthe HTML to generate asmall table with icons with hyperlinks for
continuation sets. Various optional parameters control how thisHTML segment is generated. It supports
asimilar set of onwardslink specifersto iconlink to allow use with the likes of the PHP simple skin pages
if preferred.

Availability

addcont i cons isavailable from Wacs rel ease 0.9.0 onwards in both perl and php. It was not available
prior to this release.

95

WACS API: User Interface Module

Name

read_menu — read the XML menu files and create menu record structure
Synopsis

use Wacs,

use Wacs::WacsUI,

read_nenu(nenu_fil enamne);

scal ar nmenu_fil enane;

Summary

Ther ead_menu readsthe specified menu XML fileinto the internal data structures of the wacsui object.
It should be called before using any of the other menu routines. For the standard system menus, the
collection management toolslook up the configuration variable mai nnmenu inthe layout section which by
default tells them to use the file menu. cf g in the wacs config directory (usualy / et ¢/ wacs. d). You
can edit the standard menu file to add your own additional menu definitionsfor usein specific applications.
If your application wishesto use an alternate namespace, you could specify an alternate menu config name,
something likenysi t e. cf g and also placeit in the wacs config directory.

Availability

r ead_nenu isavailable in both perl and php. The use of configuration variable nai nrrenu isonly used
from Wacs 0.9.0 onwards, previoudly it was a hard coded default.

96

WACS API: User Interface Module

Name
menu_get_default — get the default link for the menu title

Synopsis
use Wacs,

use Wacs::WacsUI;

scal ar nmenu_get default(...);

Parameters
parameter description
name the menus name; typically in lower case (eg navi gati on)
caller name of the calling application
exclude applications to exclude from menus; typically the calling application itself
options an array of optionsto be substituted.
optdesc amatching array of descriptions
Summary

The menu_get _def aul t returns the default link for the top-of-the-page menu title before the menu
pull-down is activated. Normal substitutions are applied to this option if specified.

Availability

nmenu_get _def aul t isavailablein both perl and php.

97

WACS API: User Interface Module

Name
menu_get_title — get the menu title itself

Synopsis
use Wacs;
use Wacs::WacsUI;

scal ar menu_get title(...);

Parameters

parameter description

name Name of the menu whose title you want
Summary

Thenmenu_get _titl e function returnsthe readabletitle for the specified menu. Thisistypically what
the link address returned by menu_get _def aul t will surround.

Availability

nmenu_get _titl eisavailablein both perl and php.

98

WACS API: User Interface Module

Name
menu_get_body — get the body of the menu

Synopsis
use Wacs;
use Wacs::WacsUI;

scal ar menu_get body(...);

Parameters

parameter description

name name of the menu concerned

caller name of the program calling it

exclude name of program to exclude from menus

options array of optionsto use

optdesc array of matching descriptions for the options above

isarea hashref/array of image-based sarea values

vsarea hashref/array of video-based sarea values

mflags hashref/array of model flags

vsites hashref/array of vendor codes and names

pre prefix for generated entries(eg <l i ><a href=\")

intra middle section for generated entries (eg\ " >)

post postfix for generated entries (eg </ a></ i >)
Summary

Thenenu_get _body function returnsabig string containing the HTML formatted body of the requested
menu. Using the pre, intra and post parameters you can include the correct entry pre-amble, mid-section
and tail-section for your desired menu layout.

Availability

nmenu_get body isavailable in both perl and php.

99

WACS API: User Interface Module

Name

menu_get_entry — get a single entry from the menu

Synopsis

use Wacs,

use Wacs::WacsUI;

scal ar menu_get _entry(...);

Parameters

par ameter

description

name

name of the menu concerned

caller

name of the program calling it

entry

hashref/array of the current entry object from menu tree

options

array of optionsto use

optdesc

array of matching descriptions for the options above

isarea

hashref/array of image-based sarea values

vsarea

hashref/array of video-based sarea values

mflags

hashref/array of model flags

vsites

hashref/array of vendor codes and names

pre

prefix for generated entries(eg <l i ><a href=\")

intra

middle section for generated entries (eg\ " >)

post

postfix for generated entries (eg </ a></ i >)

Summary

Themenu_get _ent ry takes an individual menu entry (which may result in multiple menu entry lines)
and processes it into a string that is returned. It is available seperately as it can be called with custom
parameters via options and optdesc to do specific non-standard parameters. All the usua substitions are
availableincluding aspecia one called #NEWPERI OD# which provides atext representation of the current

value of thel ayout - >newper i od variable.

Availability

nmenu_get _ent ry isavailablein both perl and php. The #NEWPERI CD# functionality was introduced
inWACS0.8.5.

100

WACS API: User Interface Module

Name
menu_get_handler — get the webapps name to handle a datatype

Synopsis
use Wacs,

use Wacs::WacsUI;

scal ar nmenu_get _handler(...);

Parameters
parameter description
for The type of data thisis a handler for; usually this will be the table name, eg
nodel s but it can be any arbitary name.
options Thisisthe primary key to be passed to the application specified in the lookup.
Summary

Thenmenu_get _handl er functionisthere primarily to let you find the applications that mesh best with
the menu tree currently being used. Y ou passto the function the table or activity name and the primary key
(or other lookup parameter) and it will return the preferred application to handle that type of link for this
menu/look and feel in use. If the menu configuration file does not include a specification of the handler for
any of the standard database tables, the default Wacs application will be given as the reply. A null reply
will be indicated by a single character reply of just the hash character.

Some Common Names

mainmenu

models

photographer

preferences
slideshow

Availability

nmenu_get _handl er isavailable from Wacs 0.8.5 onwards in both perl and php. It was not available
prior to this release.

101

WACS API: User Interface Module

Name

getrelated — get information on sets related to the set number given

Synopsis
use Wacs,

use Wacs::WacsUI;

scal ar getrelated(...);

Parameters

paramter description

relation gives the type of relation were looking for. Available options are
continuation, duplicates or altnmedia. If continuation is
specified it gives an array of set numbers starting with this set and continuing
for thelength of the chain. Usually thiswill be two or four sub-parts of avideo
clip. If dupl i cat es is given it follows the duplicates link of each set until
it reaches the end of the chain or returnsto the first set - it returns an array of
these sets. If al t medi a is specified an array of set numberswill be returned
prefixed by their type and a hyphen.

stype gives the type of the set we're dealing with - iel or V.

setno the set number to start from - most likely the first in the set but not necessarily.
The progression will only beforwards however. For aternative media, thiscan
be expected to be the start point that we don't want given back to us.

aternative This is the first aternative number to look for when looking for aternative
media. The chain continues until we get back to the set number given.

duplicates Thisisthefirst number of aduplicate set to look for when finding alternatives.
If you don't specify this option, the search will start with the set itself -
sometimes this maybe what you want.

dbhandle the database handle to use for submitting queries to the database

Summary

Thefunction get r el at ed provides atool for finding a sequence of related sets based on the requested
type of relation to look for and the set number given. If the relation specified iscont i nuat i on it will
return an array starting with the set itself in element zero and will then follow linksin snext tofindthe
chain of related sets and each subsequent element will be the setno of the next set in the continuation chain.

If therelation specified isal t nedi a it will return an array of all sets of other mediatypes related to this
set, but not the set's own details.

Availability

getrel at ed is available from Wacs release 0.9.0 onwards in both perl and php. It was not available

prior to this release.

102

WACS API: User Interface Module

Name

getvideoext — returns the file name extension for the video format specified

Synopsis
use Wacs,
use Wacs::WacsUI,
scal ar getvi deoext (format);

scal ar fornmat;

Parameters

The get vi deoext takes the name of the video format (ie MPEG, QuickTime, etc) as stored in the
sformat database field.

Summary

The get vi deoext returns afile name extension (npg, wmrv, nov, avi, etc) appropriate to the
type of file specified.

Availability

get vi deoext isavailable from Wacs 0.9.0 release onwards in perl and php. It was not available prior
to thisrelease

103

Chapter 10. WACS API: Standard
Components Module

Standard Components Module: Summary

Table 10.1. Function Summary: Standard Components Module

function description

masthead creates a top-of-the-page summary for any page handling set
model mast creates a model-focused top-of-the-page summary

model heads adds the icons with links for model(s) specified

findmodel creates atable and choice box for models with a given name

findrecentsets

creates rowsin atable managed form with pull-down menus containing details
of recently added sets

findrecentmodels

creates rows in atable managed form with pull-down menus containing details
of recently added models and a search box to befed to f i ndnodel

model headshot creates amodel headshot icon and basic info table contents

getgallery work out the next available gallery slot when in gallery layout mode
callframe create a suitable URL for page based navigation of the specified set
foundatsite return alist of other sites where this model can be found

kwscore reset resets the keyword scoring system back to defaults

kwscore_process process the provided string looking for keywords

kwscore_get get the specified result from the processing of the strings provided previously
getcontinfo get various pieces of information from the named set relevant for acontinuation

set

linkfromprevious

updates a previous set in a continuation with details of set just added

linkrelated updates a related set with details of the set just added - works for duplicates
and aternative media
removedups remove duplicates from an attribute string

removeconflicts

remove items that contradict the set attributes from the model attributes

addassoc Add a new model/set association record

related set info Create a popup menu of possible related sets

wacsblogtodb write anew blog entry into the specified database table
aloc_nextkey Work out the next primary key value for the specified database table

Standard Components Module: Reference

The WacsStd module contains standard components for building the standard WACS collection
management tool interface. Sinceall thesetoolsarewrittenin perl, thismoduleisonly implementedin perl.

104

WACS API: Standard
Components Module

Name

masthead — top of page banner for set-based apps

Synopsis

use Wacs;

use Wacs::WacsStd;

mast head(...);

Parameters

parameter description

setno The set number

stype The set type (single letter database format)

scatinfo The attributes for the set

scatflag The set type flag (single | etter database format)

ditle The assigned set title, aka standard description

sofftitle The official title (usually from origina site)

sarea Toplevel directory entry

scategory Middle level directory entry

sdirectory lowest level - actua holding directory (filename for videos)

simages Number of imagesin the set

sindexes Number of index images for the set

saspect aspect ratio (mainly for videos)

sformat file format for this set (.jpg, .png, .mov, .wmv €tc)

sdurhrs video or DVD scene duration - hours value

sdurmin video or DV D scene duration - minutes value

sdursec video or DV D scene duration - seconds valus

sphotog photographer reference code (references pref in photographer)

sfoundry organisation where the set came from

modelno associated model number

downloadno associated download record number

useicon when working with a set number 0, attempt to get an icon by asking for a
thumbnail of the first image

addlinks add set browsing links to the masthead centre section

width make the masthead table the specified width only

dbhandle the current database handle object

Summary

mast head generatesastandard top-of-the-page banner heading for any page that isintended to document
or amend a standard set record. It does a best efforts with whatever fieldsit has passed to it.

105

WACS API: Standard
Components Module

Availability

nmast head isonly available in Perl.

106

WACS API: Standard
Components Module

Name

model mast — creates a model-focused top-of-the-page summary

Synopsis
use Wacs;
use Wacs::WacsUI;
use Wacs::WacsStd,

nodel nast (...);

Parameters

parameter description

mname The model's name

modelno The model's primary key (model number) in the WACS database

modelicon The path relative to si t eur | to the model's icon - can be the big or small
icon or even body image.

mrating The model's rating out of five

mattributes The model's attribute list as used in addkeyicons

mcountry Which country the model is from for the flag

linkoptions Pre-formatted HTML string of the links you want to appear as aternatives to
the current page - as used in the model page for other sizes of model page. This
will appear in the right hand side of the masthead, towards the bottom.

generalinfo Pre-formatted HTML string used for the upper part of the left hand box below
the model's name. Thisis used for basic statistics and info in the model page.

shedoes This is the preformatted HTML string for the middle part of the left had box
below the model's name. Thisis used for what types of setsthis model appears
inin the model page.

currentexcl This is another preformatted HTML string - this one is used to highlight
exceptions and unusual circumstances. In the model page, this indicates if
exceptions or filtering is active. Appears towards the bottom of the left hand
box below the model's name.

descher Thisisan HTML formatted string to goin the right-hand box below the model's
name. In the model page, thisis usualy the output from the descri beher
function.

iconsize The size of icons to use when displaying attributes, etc

dbhandle The handle to the current database communication channel.

Summary

nodel nast issimilar to the masthead function except that it is focused on the model rather than the set.
Originally developed for use on the main WACS model page, it has now become a freestanding API call
that can be used from a number of applications. It includes anumber of parametersthat take pre-formatted

107

WACS API: Standard
Components Module

HTML strings to increase the flexibility of how it can be used. All will be housed within atd element of
an HTML table rendered in the configured masthead colours.

Availability

nodel mast isonly availablein Perl and only in Wacs 0.9.2 and later.

108

WACS API: Standard
Components Module

Name

model heads — adds the icons with links for model(s) specified
Synopsis

use Wacs,

use Wacs::WacsStd;

nodel heads(| ookup_net hod, set _nunber, dbhandl e);

scal ar | ookup_net hod,;
scal ar set _nunber;
scal ar dbhandl e;

Summary

The nodel heads function was originally written as part of the implementation of mast head but has
broader uses. It provides a table of a model (or group of models) headshots with ratings and name. The
| ookup_net hod can be one of byset (whereit's the models featured in the specified set number) or
byno (where the second argument is the model number rather than the set number). The default option
in other cases is any models who've been added today - it is recommended you specify bydat e and pass
the date for this option.

Availability

nodel heads iscurrently only availablein perl.

109

WACS API: Standard
Components Module

Name

findmodel — creates a table and choice box for models with a given name
Synopsis

use Wacs,

use Wacs::WacsStd;

use Wacs::WacsUI,;

findnmodel (...);

Parameters
parameter description
mname the model name or beginning of the nameto look for
offeralt Whether to offer an alternative choice or not: y or n
offervalue What the value returned for the alternative should be, eg next
offercapt What the caption for the alternative value should be
incsubmit Whether to include a submit button or not: y or n
dbhandle pointer to the currently active database handle
cgihandle pointer to the currently active CGI object

Summary

The fi ndnodel function takes the name of a model and searches the database for who it might
concievably be. It checkes the model's name, her aliases and the name from each of her ID map entries.
It presents a headshot, description, and a radio button to allow her to be choosen. It can optionally offer
an additional radio button for another purpose. The choosen model's number or next will be returned in
aCGl variable called nodel no.

Availability

fi ndnodel isonly availablein perl at thistime

110

WACS API: Standard
Components Module

Name

findrecentsets— createsrowsin atable managed form with pull-down menus containing detail s of recently
added sets

Synopsis
use Wacs,

use Wacs::WacsStd;

findrecentsets(...);

Parameters
parameter description
offset the number of days in the past to consider as recent. Defaults to the current
value of | ayout - >newper i od if not specified.
default the default value for the set number if known.
dbhandle pointer to the currently active database handle
cgihandle pointer to the currently active CGI object
Summary

Thef i ndr ecent set s function createsrowsin atable managed form with pull-down menus containing
details of recently added sets. The method selected by the user for specifying their response will be stored
in a CGl variable called set met h which will have a value of one of speci fy, i mage or vi deo. If
their responseisspeci fy the setho will bein a CGl variable called spec_set no. If their responseis
i mage thesetnowill beinaCGl variablecaledr ecent _i mg andfor vi deo it'll beinr ecent _vi d.

Availability

findrecent set s isonly availablein perl at thistime. This function was introduced in WACS 0.8.5.

111

WACS API: Standard
Components Module

Name

findrecentmodels — creates rows in a table managed form with pull-down menus containing details of
recently added models and a search box to befed to f i ndnodel

Synopsis
use Wacs,

use Wacs::WacsStd;

findrecentnodel s(...);

Parameters
parameter description
offset the number of days in the past to consider as recent. Defaults to the current
value of | ayout - >newper i od if not specified.
default The default model number if known.
dbhandle pointer to the currently active database handle
cgihandle pointer to the currently active CGI object
Summary

The fi ndr ecent nodel s function creates rows in a table managed form with pull-down menus
containing details of recently added models and a search box to be fed to f i ndnodel . The method
selected by the user for specifying their response will be stored in a CGI variable called nodnret h which
will have oneof thesevalues: speci f y,r ecent orsear ch. If their responseisspeci f y themodelno
will bein a CGI variable called spec_nodel no. If their response isr ecent , the modelno will be in
a CGl variable caled r ecent _nod. If the value is sear ch the findmodel function should be called
passing the CGlI variable sear ch asthe rmare parameter.

Availability

fi ndrecent nodel s isonly availablein perl at thistime. Thisfunction wasintroduced in WACS0.8.5.

112

WACS API: Standard
Components Module

Name
model headshot — creates a model headshot icon and basic info table contents

Synopsis
use Wacs,

use Wacs::WacsStd;

nodel headshot (...);

Parameters
parameter description
modelno The model number - that is our model number for her.
name The model's name that we're looking for - thusif we know the model as Jedda,

but know she's known as Jana el sewhere, we'd put Jana here to build up alink
along the lines of "Known as Janaat KPC" in the id description field.

howcome How we came by this model - this can be S as the result of a name search or
I if we'redisplaying her ID details for a specific site.

where The site id or short name for where we found this model called this name
key The model's key on the site we're talking about if specified.
dbhandle pointer to the currently active database handle

Summary

The nodel headshot is used to produce a basic headshot accompanied by name, attribute icons and
optionally details of her identity on a given site. It is a component used in the f i ndnodel function but
directly exposed since Wacs 0.8.4 to allow it's use in other places too.

Availability

nodel headshot isonly availablein perl at thistime.

113

WACS API: Standard
Components Module

Name

getgallery — get the next available slot in the named gallery

Synopsis

use Wacs,

use Wacs::WacsStd;

scal ar getgallery(...);

Parameters

par ameter

description

which

Specifies which area to substitute in - can be either scategory (middie level)
or sdirectory (lower level).

stype

stype of the set concerned: typicaly | for image set, V for video.

sarea

Top level areain which to search for the next available gallery slot

scategory

Themiddle level directory entry (can be either smply specified or the subject
of the substitution). This should include the variabl e pattern given in substitute
below, asingal | er y#NEXT#.

sdirectory

Thelower level directory entry (if needed, otherwise blank).

substitute

The string to be substituted with the value determined by the routine. Typically
this will be something like #NEXT#.

dbhandle

The Perl DBI handle to the current database

Summary

The get gal | ery function returns the appropriate string for the next available slot in the galery in
the specified section. It can return either an scategory or sdirectory variable as requested via the which
parameter. It isused to work out the placement of new setswithin agallery structure. What the next usable
galery isisdetermined by referenceto thel ayout attribute set sper gal | ery inthe configuration
file or the default value (usually 20) if not specified. Please see the configuration manual for more details
on this configuration attribute.

Availabilty

As acollection administration function, get gal | ery isonly available in perl.

114

WACS API: Standard
Components Module

Name

callframe — create a suitable URL for page based navigation of the specified set

Synopsis
use Wacs,

use Wacs::WacsStd;

scalar callfranme(...);

Parameters
parameter description
imgprefix which size prefix to use - mini, std, set etc - when calling wacsimg
setno The set number we're displaying
curimg What should be the current image number we're starting from
maximg How many images there are in this set
models Models specified as name, "-", model number. Comma seperated if there's
more than one. For example: Jane- 231, Sara- 78
pagemode If thisis 1, it copies the application stem argument allowing use of alternative
menu configurations for embedded use of wacspage. See the configuration
manual and example code in the Php Simple Skins for an explanation of how
thisworks.
appstem Thisisthe configuration menu to use with pagenode above. For example,
if settosi npl e, the resulting wacspage set pages created by the framer will
provide menustakenfrom/ et ¢/ wacs. d/ si npl e. cf ginsteadof / et ¢/
wacs. d/ menu. cf g
Summary

The cal | frame function returns a suitable URL for accessing the wacsframe single image framing
application with the appropriate parameters to properly integrateit into the particular WACS environment
fromwhichit'scalled. Theintended use of thisfunction and it'sinteroperation with the standard wacstools
isreally best understood by examining it in use by the Wacs-PHP simple skins. These show how this can
be used to pass customization information between the various applications.

Availabilty

Asafunction directly related to the standard wacs tools, cal | f r anme isonly available in perl.

115

WACS API: Standard
Components Module

Name

foundatsite — return alist of other sites where this model can be found

Synopsis

use Wacs,

use Wacs::WacsStd;

scal ar foundatsite(...);

Parameters

par ameter

description

modelno

The model number we want the results for

sitedesc

How the site should be described - initially only ref isaccepted. In due course,
other optionslike short nane should also be acceptable.

linkdest

The application to link to - for instance wacsmodt

itemsep

How to seperate the items - ie, (comma, space) or more complex HTML
like>/1i <>l i <tomakethem listitems

textcolour

The colour to wuse for the link - typicdly a cal to
conf_get _attr("col ours", "nmast headf or eground") .

dbhandle

the database session object pointer

Summary

The f oundat si t e function lists the sites where the specificed model may be found. This is useful
in describing the model and in linking to other similar models. This information is normally part of the
masthead of amodel page, but may well be used in other places too.

Availability

This is a new function in Wacs 0.9.2 - it was an integral part of the code of wacsmodelpage in earlier
versions. It is currently only implemented in perl.

116

WACS API: Standard
Components Module

Name
kwscore reset — resets the keyword scoring system back to defaults

Synopsis
use Wacs,
use Wacs::WacsStd;
kwscore_reset (scope);

scal ar scope;

Summary

The kwscor e_reset function resets the currently built attributes table. It is possible to run the
kwscor e_process function several times with different fields from the database and so it does not
naturally reset the internal table of results - this call provides that facility and should always be called
before each new set to consider. The scope parameter is currently ignored but may in future modify the
behaviour.

Availability

As keyword scoring is a collection administration activity, it is currently only implemented in perl.

117

WACS API: Standard
Components Module

Name

kwscore_process — process the provided string looking for keywords

Synopsis

use Wacs,

use Wacs::WacsStd;

kwscore_process(...);

Parameters

par ameter

description

string

the string to be processed against the keyword database

dbhandle

the database session object pointer

Summary

The kwscor e_pr ocess function allows you to submit a string to the keyword scoring system for
consideration. It's scores will be stored allowing both retrieval of results and modification of those results
by subsequent invocation of the kwscor e_process with aternative strings. It is perfectly possible
to consider both the title (field st i t | e) and the officia title (field sof fti t | e) if that is appropriate.

It could also be run on the description of the set if that is present.

Availability

As acollection administration function, kwscor e_pr ocess

118

iscurrently only availablein perl.

WACS API: Standard
Components Module

Name
kwscore _get — get the specified result from the processing of the strings provided previously

Synopsis
use Wacs;
use Wacs::WacsStd,

kwscore get(...);

Parameters
parameter description
what which result you are requesting: valid onesare: cat, | oc, det, attr
or ot her.
default adefault value you want returned if nothing is found for this request
Summary

The kwscor e_get function retrieves the results from any kwscor e_pr ocess calls made since the
last kwscore_reset. The what argument specifies what to return:- cat returns a category flag
(scat fl agetc.),| oc returnsalocation (sl ocat i on), det returnsadetailedlocation (sl ocdet ai | ,
at tr returnsthe attributes (scat i nf o and ot her isavailable for future expansion.

Availability

As acollection administration function, kwscor e_get iscurrently only available in perl.

119

WACS API: Standard
Components Module

Name

getcontinfo — get various pieces of information from the named set for the continuation

Synopsis
use Wacs;
use Wacs::WacsStd,

scal ar getcontinfo(...);

Parameters
parameter description
setno The set number for which the information is required.
dbhandle Database handle for the current connection to the database.
Summary

The get cont i nf o returns a hashref containing those set schema values for the specified record that
would make sensible defaults for use in the creation of a continuation set.

Availability

Asacollection administration function, get cont i nf o iscurrently only availablein perl. Thisfunction
was introduced in Wacs 0.9.0 and is not available in previous versions.

120

WACS API: Standard
Components Module

Name

linkfromprevious — updates a previous set in a continuation with details of set just added

Synopsis
use Wacs;
use Wacs::WacsStd,

i nkfronprevious(...);

Parameters
parameter description
setno The set number for set just added.
previous The set number for the older set now being referred to as the previous onein
aconnection series.
setpos The position of this set in a sequence of sets (must not be 1!).
dbhandle Database handle for the current connection to the database.
Summary

Thel i nkf r onpr evi ous updatesthe previous record with the forward pointer to the just added record
to allow alink chain sequence to be built up.

Availability

As a collection administration function, | i nkf r onpr evi ous is currently only available in perl. This
function is new in Wacs 0.9.0 and was not available in previous versions.

121

WACS API: Standard
Components Module

Name
linkrelated — updates arelated set's duplicates or aternative media links with details of a set just added

Synopsis
use Wacs;
use Wacs::WacsStd,

linkrelated(...);

Parameters
parameter description
setno The set number for set just added.
relatedno The older set to which this relationship connection should be made.
relationtype Thetype of therelationship - dupl i cat e or al t medi a
dbhandle Database handle for the current connection to the database.
Summary

Thel i nkr el at ed updates the related record with the appropriate pointer to the just added record to
alow interlinking of related records. The relationship can be either that of a duplicate set (relation type:
dupl i cat e) that as come from an aternate vendor or at a different resolution, or an alternative media
(relationtype: al t nedi a) set such asthe video of the same scenario and models as an existing image set.

Availability

As a collection administration function, | i nkr el at ed is currently only available in perl. Thisfunction
isnew in Wacs 0.9.0 and is not available in previous versions.

122

WACS API: Standard
Components Module

Name

removedups — remove duplicates from an attribute string

Synopsis
use Wacs,
use Wacs::WacsStd;
scal ar renovedups(raw attribute list);

scalar raw attribute |ist;

Summary
Ther emovedups function removes any duplicate entries from a space-separated list of attributes - this
is typically necessary when merging more than one source of attribute information like that from the

kwscor e_get function and theresult of fetching model attributes. Pleaseaso seer enmoveconflicts
function below.

Availability

As a collection administration function, r enovedups is currently only available in perl.

123

WACS API: Standard
Components Module

Name

removeconflicts — remove items that contradict the set attributes from the model attributes
Synopsis
use Wacs,

use Wacs::WacsStd;

scal ar renoveconflicts(...);

Parameters

parameter description

model The model's attributes (mat t r i but es field)

existing The existing combined attributes (ie those taken fromthe set scat i nf o field
Summary

Therenoveconf |l i cts function is designed to stop contradictory overwriting of mutually exclusive
model attributes - typically those relating to pubic hair trimming, as these can often vary between sets of
the same model. It is provided with the model's attributes plus the existing set attributes - if the existing set
attributes do not include a contradictory value, then the model's attributes are included. If there'saconflict,
the model's pubic hair attribute is dropped in favour of that in the set. Thisisusually the correct behaviour.
Thisif amodel is normally considered to have a shaven pussy, but appearsin a set before she's shaven it
(or even as she does s0), then the set may be marked with the hairy attribute. If that is there, the model's
default of shaven will be removed and only her other attributes (tattoos, piercings, etc) will be imported.

Availability

Asacollection administration function, r enoveconf | i ct s iscurrently only available in perl.

124

WACS API: Standard
Components Module

Name

addassoc — add a new association record connecting a model with a set
Synopsis
use Wacs,

use Wacs::WacsStd;

scal ar addassoc(...);

Parameters
parameter description
setno the set number to be associated with amodel (see below)
modelno the model number to be associated with the above set
asstype the type of the association - currently only G for genera but this might be
changed in the future - see the schemareference for theassoc table for more
information.
dbhandle The open database handle for use in querying the database
Summary

The addassoc function is designed to add association records between sets and models. To do this it
creates anew record in the assoc database table using the next available primary key for that table. To
call addassoc you need to provide a set number, a model nhumber and a dbhandle to a currently open
database session. Optionally you may also provide an association type although currently only one type,
Gfor genera is defined in the WACS database dictionary. addassoc protects against adding multiple
associations between the same model and set.

Availability

As acollection administration function, addassoc iscurrently only availablein perl.

125

WACS API: Standard
Components Module

Name
related_set info — Create a popup menu of possible related sets

Synopsis
use Wacs,

use Wacs::WacsStd;

related_set _info(...);

Parameters
parameter description
reltype The type of the relation we're dealing with - r ank or al t medi a
modelnos A quoted, comma seperated list of model numbers whose sets should be
included in the list.
type The set type of the type we're looking for for rank relations or the type we're
NOT looking for for alternative mediarelations.
rank The type of rank relation we're creating - C for Continuation records, S for
alternative (duplicate) records
setno The set number we're actually working on (if already known) to be left out of
the selection made.
default Allows specification of a set number to be the default - ideal for an update
application
dbhandle The handle to the open database connection
cgihandle The handle to the CGI object we're creating a new popup menu using
colspan The colspan attribute to use in the generated table line
Summary

Ther el at ed_set _i nf o function outputs asingle line of atable, designed to fit the Standard WACS
collection management tools layout, that adds a pop-up menu using the CGIl.pm library. The purpose
of this popup menu is to establish connections between sets using the sal t medi a, snext/ sprev or
sdupl i cat es fields.

Availability

Asacollection administration function, r el at ed_set _i nf o iscurrently only availablein perl.

126

WACS API: Standard
Components Module

Name
wacsblogtodb — write a new blog entry into the specified database table

Synopsis
use Wacs,

use Wacs::WacsStd;

scal ar wacsbl ogtodb(...);

Parameters
parameter description
title Title of the blog entry (max 80 characters)
text The text for the blog entry (max 4095 characters)
table The database schema to write to - normally the result of doing a
conf _get _attr("tabl e", "notes") toget therea name of the notes
schema. Thisisthe default action if this parameter is not specified.
tablekey Name of the primary key to the table specified above - typically nent r yno
for the notes table. Thisisthe default action if this parameter is not specified.
bywhom Name of the person/entity who made thisblog entry. Defaultsto anonynous
if not specified.
type Type of blog entry to create - B for standard Blog, F for Feature article.
method Method of creation - A for Automatic when created by updatestats or similar,
Mfor manual when uploading afile using wacsblogctl.
dbhandle The open database handle for use in accessing the database
Summary

Thewacsbl ogt odb function writes text for a blog entry into the notes table with the correct formating
and splits it if necessary. At present it will accept blog entries up to 4095 bytes in length and these
can include al of the standard WACS configuration substitutions (#SI TEURL# et a) as handled by
conf _dosubs to allow for icons and set links to be included quickly and efficiently.

It is provided with the ability to specify the destination table and key in case you wish to use a different
database other than notesfor the blog. Thefields and the structures (with the exception of the primary key)
have to be the same, but of course the permissions can be different on that table.

Availability

As acollection administration function, wacsbl ogt odb iscurrently only availablein perl.

127

WACS API: Standard
Components Module

Name

alloc_nextkey — allocate the next new unique primary key for the database table specified
Synopsis

use Wacs,

use Wacs::WacsStd;

scal ar al |l oc_nextkey(table_nanme, primary_key fiel dnane, dbhandle);

scal ar tabl e_nane;
scal ar primary_key fiel dnane;
scal ar dbhandl e;

Parameters
parameter description
table_name The name of the table in the Wacs database schema for which the new key

should be allocated, eg set s, nodel s or assoc.

primary_key fieldname |The name of the primary (unique) key to that database table.
dbhandle The open database handle for use in querying the database

Summary
Theal | oc_next key function simply returns the next available value for creating a new record in the

specified table. It's rather simplistic and can be caught out by race conditions, but it mostly gives you a
valid numeric primary key for the table concerned.

Availability

Asacallection administration function, al | oc_next key iscurrently only availablein perl.

128

Chapter 11. WACS API: Identification
Module

Identification Module: Summary

Warning

In Wacs 0.9.2 the exisitng Wacsld module was split into two - this part WacsID contains
the good routines that are expected to remain as part of the Wacs APl in the long term.
Those routines that were more questionable and likely to be re-written have been moved to
WacsDnl. Y ou need to include both to replicate the pre-0.9.2 functionality

Table 11.1. Function Summary: Identification Module

function description

reset_attr reset the global attribute table

id_get_flag get previously determined flag

id_set_attr store specified attribute for reuse later
id_get_info get previously determined catinfo (ssetflag)
id_get_photog get previously determined photographer
id_get_dnldno get download record number
id_get_modelno get the model number

id_get_modelname

get the model's name

id_get_vendor get the vendor reference

id_get_dbhandle get the current DB handle

id_get_key get the current modelsid at the current vendor
id_get_setkey get the set key at the current vendor

id_get_setname

get the name of the most recent set

id_get_status get the status of the most recent set

id_get_notes get the current value of the notesfield

id_get_setno get the current value of the setno field

id_get_srank get the current value of the srank field (New in 0.9.0)
id_get_sprev get the current value of the sprev field (New in 0.9.0)
id_get_sduplicates get the current value of the sduplicates field (New in 0.9.0)
id_get_saltmedia get the current value of the saltmediafield (New in 0.9.0)

id_get_sdownload

get the current value of the sdownload field (New in 0.9.0)

id_get_attr get the specified attribute for the specified object (New in 0.9.2)
media_scan scan the specified mediafile for sizes, codecs, etc (New in 0.9.2)
media_get_attr retrieve the requested parameter for the specified media file (New in 0.9.2)

media_thumbs

generate appropriate thumbnails for use with video sets (New in 0.9.2)

129

WACS API: Identification Module

function description

media_settings provides the current settings for thumbnailing, dimension descriptions, etc
(New in 0.9.2)

dnld_markdone mark the download record as successfully done

dnld_checkadd checks or adds a new download record

dnld_update update the download record with new information

vend_dnld return the download location for the specified vendor

vid_getsize get the size of the specified video file

find_namestem look for when known image naming conventions

id_gen_proto2struct process a prototype link url and work out what tokens it contains.

id_gen_tokenmatchstringpoks for the specified token

id_gen_trymatch iterates through trying to find matches for the tokens given
id_vid_trymatch special version of id_gen_trymatch which looks only for videos
id_gen_findaobj find what the target object is actually called

id_gen_getvarval generalised matching routine used in id_gen_findobj
chk_vid_type check if type extension isa known video file type
chkid_existing see if we already have thisidmap for this model/site combination

Identification Module: Reference

Thefollowing pages contain the * nix style reference pagesfor each function call in the WACS 1D module.
These detail what the function does, what parameters it takes, what it returns and which versions of the
Wacsld library it isavailable in. This section is new in WACS 0.9.2 and is incomplete, documenting the
most recently added API callsonly.

130

WACS API: Identification Module

Name

media_scan — Scan the specified mediafile for attributes
Synopsis

use Wacs,

use Wacs::Wacsld;

scal ar nmedi a_scan(pat hnane) ;

scal ar pat hnane;

Summary

Themedi a_scan functioninitiatesascan of the specified file path for it's detail ed attributes. Thisshould
include height and width, codec, etc for all types of media, and additional information where appropriate
like duration for video files. The initial implementation uses the perl Image::ExifTool library for this
purpose but that may change in time. On completion of the scan, the filename is returned by the function
- this can then be used as the parameter to media_get_attr to select the specific media object and attribute
to query.

Availability

nedi a_scan isavailablein Wacs 0.9.2 and | ater.

131

WACS API: Identification Module

Name

media_get_attr — retrieve the requested parameter for the specified mediafile

Synopsis
use Wacs,

use Wacs::Wacsld;

scal ar nmedia_get_attr(filenanme, attribute);

scal ar fil ename;
scalar attribute;

Parameters
parameter description
hei ght The height of the video/photo in pixels
wi dt h The width of the video/photo in pixels
f or mat The format of the file: JPEG, PNG, TIFF for images; MOV, MPEG, WMV,
for videos
codec The Codec format used - Windows Media, MPEG-2, etc
duration The running time of avideo clip
creation The creation date in the corrext format for the current database

resol ution

Text name of the resolution: LD, SD, ID, HD, UHD, Mobile etc

aspectratio

The actual numeric aspect ratio as a decimal humber

aspect The generalised aspect ratio expressed as aratio: 4:3, 16:9, etc
durhrs The video clip duration broken up into parts - the hours component
durmn The video clip duration - the minutes component
dur sec The video clip duration - the seconds component

Summary

Themedi a_get _at t r function fetches the specified result (attribute) of the media file named in the
filename parameter. This is the filename provided by a previously run call to media scan to perform the
actual scan itself. A number of different media scans can be queried at the same time so long as they do
not have the same file name. The results are all obtained and stored during the media_scan call and are
simply retrieved from aresults array when usingnedi a_get _attr.

Availability

nedi a_get _attr isavalablein Wacs0.9.2 and later.

132

WACS API: Identification Module

Name

media_thumbs — generate appropriate thumbnails for use with video sets
Synopsis
use Wacs,

use Wacs::Wacsld;

scal ar medi a_t hunbs(...);

Parameters

parameter description

mode which mode to work in - usually "icons"' or "thumbs" but can be anything - it

is appended to the file path

start The number of seconds into the video clip to start producing thumbnails from

number The number of icons/thumbnails to produce for thisfile

step How many seconds gap there should be between each icon

file The video file to create thumbnails from

source The source directory where the video file can be found

dest The destination directory into where the thumbnails should be written

stem Provides an alternative filename stem for the output thumbnail
Summary

Theredi a_t hunbs function creates the specified number of thumbnailsfor the named video file using
the external program ffmpegthumbnailer. Amongst other places, this is used by wacsunpackmgr to
create some suggested icon screenshots for the video clip being unpacked.

Availability

nedi a_t hunbs isavailablein Wacs 0.9.2 and later.

133

WACS API: Identification Module

Name

media_settings — provides the current settings for thumbnailing, dimension descriptions, etc
Synopsis
use Wacs,

use Wacs::Wacsld;

scal ar medi a_settings(...);

Parameters

parameter description

fil enane Name of the XML file to parse for settingsinfo (Not active yet)
Summary

The medi a_set ti ngs returns a data structure containing the configuration parameters for various
mediaoperations. Theobject t hunbs withinthisdatastructure containsan array of settingsfor thumbnails
for agiven duration of video clip.

This contains m n and max which determines the minimum and maximum number of seconds duration
that this rule applies to. There is also desc which describes the rule and nunber which tells you how
many thumbnail locations will be produced by the rule. There isthen apos object which describes what
each locationis, providing st art andt ai | for each cluster of auto generated thumb nails. The valuefor
start isbetween 0 and 1 and indicates where the thumbnail should be taken from - for instance 0. 33
indicates this thumbnail should be taken 33% of the way through the video clip.

Availability

nmedi a_set ti ngs isavailablein Wacs0.9.2 and later.

134

Chapter 12. WACS API: Downloading

Module

Downloading Module: Summary

Warning

In Wacs 0.9.2 the exisitng Wacsld module was split into two - this part WacsDnl contains
the bad routines that are expected to be re-written and not to remain part of the Wacs API in
the long term. Those routines that were more stable and likely to remain have been moved
to Wacsld. Y ou need to include both modules to replicate the pre-0.9.2 functionality

Table 12.1. Function Summary: Downloading Module

function description

ident_img Identify characteristics of an image set from download info
ident_vid Identify characteristics of avideo clip from download info
dnld_img retrieve a download record based upon the namestem
id_mpage process a model page looking for links to suitable sets
id_i_fetch

find_cookies

extractphotog

135

Part lll. WACS Database Schema

Thisis the Database Schema Reference Manual, or data dictionary, for the WACS environment. This documents the
database tables in use, their contents, structure, relationships and assigned values.

The WACS database schemas are built with the convention that the first letter of the schema name is prefixed to all
fields within that schema. Thus afield from the sets schemawill start with the letter s, afield from the assoc schema
will start with the letter a and so on. Generally relationed fields will have fundamentally the same name, such that the
set number isset no in the sets schema, aset no in the assoc schema, t set no in the tags schema, dset no in the
download schema, and so on. This makes performing relational joins much easier and more portable since one can
do the likes of wher e anpdel no = nodel no without any ambiguity and without having to specify the table
name explicity.

Where possible fields with alimited set of possible values will be single character fields with a reasonably neumonic
value for each possible value. Thus the mediatype (st ype, dtype, etc)isV for Video Clip, | for Image Set, D
for DVD scene, and so on. A lookup hash of the legal values will typically be available for programmers to use from
the core Wacs module (see the Part 11, “WACS APl Programming Reference” for more details).

Chapter 13, Schema Reference: Sets
Chapter 14, Schema Reference: Assoc
Chapter 15, Schema Reference: Idmap
Chapter 16, Schema Reference: Models
Chapter 17, Schema Reference: Download
Chapter 18, Schema Reference: Photographer
Chapter 19, Schema Reference: Tag
Chapter 20, Schema Reference: Vendor
Chapter 21, Schema Reference: Conn
Chapter 22, Schema Reference: Keyword
Chapter 23, Schema Reference: Wacsuser
Chapter 24, Schema Reference: Attrib
Chapter 25, Schema Reference: Notes

Table of Contents

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

SChEMA REFEIENCE. SELS .. vttt e e e e eas 138
SELS SCHEMA SOL ... et 138
SELS. DEfINEA VAIUES ... vttt en e 139

SChEMA REFEIENCE: ASSOC ...uiviitiiieiie ettt ettt e et e e e et e e e e e e e ens 145
ASSOC: SCHEMA SOL ...ttt e e e aans 145
ASSOC: DEFINEA VAIUESceiiiiiieee e ae e 145

Schema REfErenCe: TAMEIDciieei ettt e eens 146
[dMaP: SCNEMA SQL ...ttt 146
[dMaP: DEfINE VEIUEScooiiiieiiii et 146

Schema ReferenCe: MOGEISoivniiii e 148
MOdElS: SCNEMEA SOL .. .eeeieiie e e e e e e e e e 148
MOUEIS: DEFINEA VAIUESonitiiii et ene 149

Schema Reference: DOWNIOAdc.iiiiiiiii e 153
Download: SChemMa SQL ... 153
Download: DEfINEA VAIUESuiiiiiiieiecee e ans 153

Schema Reference: Photographeri i 155
Photographer: SChema SQL ... 155
Photographer: Defined ValUEScoouuiiiiiii e 155

SChemMa REFEIENCE] TG . eevuniiiiii et et ettt et e e eenaas 158
Tag: SChEMA SOL ...t et 158
Tag: DEfiNEd VAIUBS .. .ot ettt e et e e e 158

Schema REfErENCE VENUONoiiiiii e e eaaas 159
VeNndor: SChEMA SQL ... e e e e e e et e ea e eans 159
Vendor: DEfINEA VAIUEScviiiiiiiie e 160

SChemMa REFEIENCE: COMN . .uviiiii e et et e e e e e e e e e eaneanns 161
CONN: SCHEMA SQL .. oei ettt ettt e e et e et e et e e et e e et e e et e e et eeanaee 161
ConN; DEFINEA VAIUES ...ttt e e e e e et e e 161

Schema Reference: KEYWOITuiiiiiiiiei ittt 162
Keyword: SChema SOLuuiiiiiie et e e 162
Keyword: DefiNetd VAIUBSuuiiiiiiiiee ettt e 162

Schema REFEIENCE: WBCSUSEYiiiiii e e ettt e e e e e e et et e e e e e e eeans 163
USEr: SCREMA SOL ..eeiiiiie et e e e e e e e 163
USEr: DEfINEA VAIUES ...viiiiiiiiee et e e e e e aae e 164

Schema ReEfErenCe: At ... 166
ALLriD: SChEMa SQL ...eeie e e 166
ALID: DEFINEA VAIUES ...oocveiiii e eas 166

Schema REFEIENCE: NOLES ... ouiriii e et e e aneeans 168
NOES: SCHEMA SQL ... ettt e et e e e e e e e e e et eeen e eeen 168
NOLES, DEFINEA VAIUES ... e e 168

137

Chapter 13. Schema Reference: Sets
Sets: Schema SQL

Warning

. WACS 0.8.5 contains a significant number of additions to this schema ahead of the shift to
the 0.9.x release series. None of these changes are used or accessed by applicationsin Wacs
0.8.5, so you can defer updating the Schema until Wacs 0.9.0 comesout if youwishto. There
will be atool to update the schema supplied with Wacs 0.9.0; this appeared in the wacs 0.8.6
release and is called wacsschema. It isintegrated into the existing wacssetup tool which can
now perform upgrades aswell asfirst timeinitialisation. The newly added and currently not
used fields arethose in bold typeface.

create table sets

(setno nunber (9) primary key,
stype char (1) not null
sst at us char (1) not null
srank char (1),
sauto char (1),
srating char (1),
sflag char (1),
st echqual nunber (2),
svariety nunber (2),
svisits nunber (2),
sf or mat var char 2(10),
scodec var char 2(40),
stitle var char 2(240),
sofftitle var char 2(240),
sof ficon var char 2(160),
saddi con var char 2(160),
shane var char 2(80),
shair var char 2(80),
snodel no var char 2(40),
sl ocation var char 2(20),
sl ocdet ai | var char 2(40),
sattire var char 2(20),
sfocus char (1),
sphot og varchar 2(6) references photographer
ssource var char 2(80),
sfoundry var char 2(80),
sproddat e dat e,
srel date dat e,
suscattr char (1),
snot es var char 2(240),
sdesc var char 2(2048),
si ndexes nunber (6),
si mages nunber (6),
sdur hrs nunber (2),
sdurmin nunber (2),

138

Schema Reference: Sets

sdur sec

sl andx

sl andy
sportx
sporty
saspect

sf ps
sinter
sski pfr
sbytes
sdvdno
sdvddi sc
sdvdtitle
sdvdst artch
sdvdendch
si dl ogo
serrors
sdupl i cates
sal t medi a
snext
sprev

sset pos
scatinfo
scatfl ag
snanest em
sdownl oad
sarea
scat egory
sdirectory
scomment s
sadded
sanended

Note

nunber (2),

nunber (6),

nunber (6),

nunber (6),

nunber (6),

var char 2(10),
nunber (6),

char (1),

nunber (9),

nunber (12),
nunber (6),

nunber (2),

nunber (3),

nunber (3),

nunber (3),

char (1),

char (1),

nunber (9) references
nunber (9) references
nunber (9) references
nunber (9) references
nunber (2),

var char 2(160),

char (1),

var char 2(80),

var char 2(160),

var char 2(160),

var char 2(160),

var char 2(240),

var char 2(240),

dat e,

date

sets,
sets,
sets,
sets,

sattire isanew field introduced into the schema in release 0.8.1; it came into use in
WACS 0.8.2. It is currently scored using the other attribute of the keyword system, thiswill
change to using ki wear in WACS 0.9.0.

Tip

The new fields introduced in WACS 0.8.5 are sr ank, sf ocus, sal t nedi a, snext,

sprev and sset pos. Additionally referential integrity is now enforce for sduplicates
which shouldn't cause a particular problem if it's been used correctly.

Sets: Defined Values

Table 13.1. stype: Type of Set: defined values

stype

Image Set

139

Schema Reference: Sets

stype

\% Video Clip

A Audio File

S DVD Scene

Table 13.2. sstatus: Status of Set: defined values

sstatus

M Manually Added, Details Not Checked

A Automatically Added, Details Not Checked
N Normal - Checked

G Good - Thoroughly Checked

U Unknown

Table 13.3. sauto: Automatic Update of Set Allowed?: defined values

sauto

N None (no auto updates)

L (on-disk) Location only - all attributes manual
A Append only - al existing entries stay

F Fully auto-generated - all values can change

Table 13.4. srating: Overall Rating For The Set: defined values

srating

Finest

Very Good

Good

Reasonable

Mediocre

Ol RPN WA~ O

None Specified

Table 13.5. stechqual: Technical Quality Rating For The Set: defined values

stechqual
5 Finest - HD Video done well, Multi-megapixd tills
4 Very Good - Well lit SD or good HD Video, good megapixel + stills

140

Schema Reference: Sets

stechqual

3 Good - Well done low-res SD, good sub-megapixel stills; not quite so good
but higher res

2 Reasonable - either very small, or bad equipment (flash on camera) used

moderately well

Mediocre - lack of skill, bad equipment, poor composition

None Specified

Table 13.6. svariety:

Unusualness Rating For The Set: defined values

svariety

Very Unusual - look at the set scenario and think "What the F***1"

Unusual - unusual and very interesting - "Wow"

Neat - interesting and impressive but not quite "Wow"

Cute Twist - adlightly unusual twist, unusual pose etc

Ordinary - can still score very highly in overall and tech

Ol RPN WA~ O

None Specified

Table 13.7. sformat:

Format of the File(s) In The Set: defined values

sformat

JPEG JPEG image

GIF GIFimage

PNG PNG image

PNM PNM,PBM,PGM,PPM image

WMV Windows Media Player Video

AVI AV1 Video (codec specified separately)

QT QuickTime .mov Video (codec specified separately)
MPEG MPEG Video (MPEG-1 or 2)

Table 13.8. sidlogo: Presence of Burnt-in Logo: defined values

sidlogo

U Unknown

Y Y es - image/video has burnt-in logo
N No - image/video is clean of bugs

141

Schema Reference: Sets

Table 13.9. sinter: Progressive or Interlaced Video Structure

sinter
I Video has interlaced frame/field structure
P Video has progressive frames (atomic)

Table 13.10. serrors:

Presence of Known Errors: defined values

serrors

N None detected

F Fixed - faulty images/video have been fixed - Quality may have been
compromised - sizes/signatures no indicative of original

E Encoding Only - causes message but renders OK

C Some Corrupt Images/Segments of video

Table 13.11. scatflag

: Generalised type of the set: defined values

scatflag

Fuck - straight sex

Leshian - leshian sex

Group - more than two people having sex, mixed-gender

Toy - Solo but uses toys such as dildo, vibrator, etc

Solo - Maodel on her own (possibly with a non-participatory audience)

Masturbation - Solo but includes masturbation activities

None - not determined yet

Backstage - Behind The Scenes set featuring this model

Clothed - non-nude set featuring this model

o|lojlm|ZZ|n Ao |m

Duplicate - duplicate set - maybe from a different site - DEPRICATED

Table 13.12. srank: role and position of set: defined values

srank (defined values)

P

Primary (Main) - a standard freestanding record

C Continuation - a subsequent part of a set split over mulitple sets, most often
amovieclip
S Secondary (Alternate) - an alternative version of another set - a different

resolution, a split mediafile, or the same set as distributed by another vendor.

142

Schema Reference: Sets

Table 13.13. docation: generalised description of locations: recommended values

slocation (recommended values)

Note
Thisisa Recommended Values list only; additional values can be added as appropriate
Balcony Balcony or Terrace; outdoors but not part of Garden
Bathroom Bathroom, Toilet or Shower Cubicle
Bedroom Bedroom or other sleeping area
Country Country - including Beach, Forest, and Fields
Dining Room Dining Room or Eating Area
Garden Garden or other private outdoor area
Hallway Hallway, Staircase or Entrance
Kitchen Kitchen or Kitchen area of apartment
Laundry Laundry, Cleaning or Utility Area
Lounge Lounge, Sitting Room or Other Seating Area
Office Office, including Home PC desk
Other Room Any other room - (Domestic) Library, Junk Room, Garage, etc
Specialised Speciaised Location: Swimming Pool, Shop, Recording or TV Studio,
Factory, Railway Station, etc; additional details can be placed in slocdetail.
Sports L ocation associated with Sports and Exercise: Gym, Locker Room, etc.
Studio White or other plain background Photographic Studio - but NOT Television or
Audio recording studios as a feature of the set theme

Table 13.14. sattire: generalised description of model's clothing: recommended
values

sattire (recommended values)

Note
Thisisa Recommended Values list only; additional values can be added as appropriate
Business A tidy business suit or other combination appropriate to an office environment.
Casual A pretty general category - jeans, denim skirts, summer dresses
Elegant Particularly stunning dresses or formal evening wear.
Fantasy Fantasy costumes of all sorts.
Glamourous A glamourous party dress or similar that is quite risque and is likely to
spontaneously reveal the woman's assets!
Housewear The sort of clothing that isworn casually about the house but not normally in
public.
Hospitality Housemaids and Waitress Uniforms
L aw Enforcement Police and Security Guard Uniforms

143

Schema Reference: Sets

sattire (recommended values)

Medical Uniforms appropriate to the Medical Industry

Military Uniforms appropriate to the Military Services

Nightwear Pajamas, Baby Doll dresses, Nightshirts

Nothing Nude!

Partial Only partially clothed

Retail Uniforms appropriate to the Retail and other service industries (but not Maids)

Schoolwear Various uniforms associated with Schoolgirls including cheerleaders and gym
dips

Smart Smart or attractive clothes suitable for going to a party without being elegant
or stunning.

Sports Sportswear - track suits, sports bras, cycling ouitfit, etc

Swimwear Bikinis and other swimming costumes

Underwear Just abraand panties, or similar - BUT does not include atank top plus panties

which with the addition of askirt or jeans would be presentable outdoor wear.

Table 13.15. suscattr: how to generate the 18 USC 2257 declar ation: defined values

suscattr

Y Vendor based - use vendor's USC declaration address

E Exempt - for pure nude sites without sexual activity of any kind

P Photographer based - use photographer's address for USC declaration
N Suppress declaration - NOT RECOMMENDED FOR USRESIDENTS
G Generic - include generic text with all vendor addresses

144

Chapter 14. Schema Reference: Assoc
Assoc: Schema SQL

create table assoc

(assocno nunmber (9) primary key,
anodel no nunber (6) references nodel s,
aset no nunber (9) references sets,
ast at us char (1),
aadded dat e,
aanended dat e

)
Assoc: Defined Values

Table 14.1. astatus; association status; defined values

astatus

M Manually Added

G Generated Automatically

R Relationship entry - not the primary model for this set.

145

Chapter 15. Schema Reference: ldmap
Idmap: Schema SQL

Note

A possible future direction is for thistable to be relationally linked to the vendors table such
thati dmap.isite = vendor.vsite

create table idnmap

(identryno nunber (7) prinmary key,
i rodel no nunber (6) references nodel s,
i status char (1),
isite varchar 2(20) not null
i key var char 2(30),

i al tkey var char 2(30),
i name var char 2(30),
i not es var char 2(80),
iactive char (1),

i changed dat e,

i checked dat e,

i added dat e,

i anended dat e

)
Idmap: Defined Values

Table 15.1. istatus: idmap status: defined values

istatus

M Manually Added

A Generated Automatically

I Imported From Another WACS site

Table 15.2. iactive: model activity status asthisidentity: defined values

iactive

Y Yes - active model (refresh list with auto tools)

D Dormant - no new sets for awhile (don't bother checking)
N No - inactive (id not known)

(0] Obsolete - old reference (no longer there)

146

Schema Reference: |dmap

Table 15.3. isite: Some recommended site abbrievations; recommended values

isite (recommended values)

Note
Thisisa Recommended Values list only; additional values can be added as appropriate
21SEX 21sextury.com
ALS AL SScan.com
AMK AMKingdom.com (aka ATK Galeria)
ATE ATKEXotics.com
ATKP ATKPremium.com
AW AbbyWinters.com
C17 ClubSeventeen.com
DDF ddfprod.com
FJ FemJoy.com
IFG infocusgirls.com
JAFN jennyandfriends.net
KPC karupspc.com (aka Karup's Private Collection)
KHA karupsha.com (aka Karup's Hometown Amateurs)
SE sapphicerotica.com
TF teenflood.com
PMET PinkMetallic.com, the WACS Demo site

147

Chapter

16. Schema Reference: Models

Models: Schema SQL

Warning

WACS 0.8.5 contains a significant number of additions to this schema ahead of the shift to
the 0.9.x release series. None of these changes are used or accessed by applicationsin Wacs
0.8.5, so you can defer updating the Schemauntil Wacs 0.9.0 comesout if youwish to. There
will be atool to update the schema supplied with Wacs 0.9.0. The newly added and currently
not used fields are those in bold typeface.

Note

Please notice that the use of metric in the vital statistics is not intended to be a dig at
the imperial measurements, merely that it reliably and consistantly conveys the necessary
information as sensible, manageable integers. Utility functions are planned to make it easier
to convert and update in a future release of WACS. You try writing an SQL query to find
models between 5ft 3ins and 5ft 6ins in height, as compared to between 160 and 168 cms
in height. See what | mean?

create tabl e nodels

(nodel no nunber (6) primry key,
mane var char 2(40) ,
mhai r var char 2(15),
m engt h var char 2(20) ,
nitsize var char 2(10),
ncupsi ze char (1),
nmeyes var char 2(15),
nr ace var char 2(15),
mattri butes var char 2(60) ,
mal i ases var char 2(60) ,
nmdi sting var char 2(80),
musual var char 2(60) ,
m nmage var char 2(80),
nmbi gi mage var char 2(80),
nbodyi mage var char 2(80),
mal ti mage var char 2(80),
net at us char (1),
nrating char (1),
npussy char (1),

m abi a var char 2(80),
nfl ag char (1),
nvi deos char (1),
nsol o char (1),
net rai ght char (1),
m esbi an char (1),
nfetish char (1),
mmast char (1),
nt oys char (1),

148

Schema Reference: Models

not her
mset s
mmi mages
mvi deos
ncountry
mhomet own
nage
nageyear
ncst at us
mvi t bust
mvi t wai st
nvi t hi ps
nbui | d
nmhei ght
maei ght
mdr ess
nmst arsi gn
noccupati on
ncont act
nmbi rt hdat e
monfile
nmagency
mot es
nmbi o
madded
mamended

)

char (1),
nunber (4),
nunber (7),
nunber (4),
var char 2(30),
var char 2(80),
nunber (3),
nunber (4),
char (1),
nunber (4),
nunber (4),
nunber (4),
char (1),
nunber (3),
nunber (3),
nunber (2),
nunber (2),
var char 2(30),
var char 2(80),
dat e,

char (1),

var char 2(80),
var char 2(240),
var char 2(240),
dat e,

date

Models: Defined Values

Table 16.1. mstatus; model record status; defined values

mstatus

A Automatically Added, Details Not Checked
Manually Added, Details Not Checked

N Normal - Checked

G Good - Thoroughly Checked

P Placeholder - Not Real Person

Table 16.2. mrating: model rating: defined values

mrating

5 Finest (included in Q= searches and front page)

4 Very Good (included in Q= searches and front page)

3 Good (not included in Q= searches, included in front page)
2 Reasonable (not included in Q= searches or front page)

149

Schema Reference: Models

mrating
1 Mediocre (not included in Q= searches or front page)
0 None Specified (listed in U= searches)

Table 16.3. mpussy: model's normal pubic hair style: defined values

mpussy

H Hairy

T Trimmed

B Brazilian style shaved - very little hair above clit area

S Shaven - completely

\% Varies (best avoided, try and pick one of above - her usual style)
N Not Specified

Table 16.4. mflag: special marking flag for models: defined values

mflag

S Favourite Solo

L Favourite Leshian

C Favourite Cutie

F Favourite Straight

M Current Featured Model

P Placeholder (not areal person)

Table 16.5. model activitesflags: defined values

model activitiesflags

fieldname ‘possiblevalu&s

Note

Automatically updated by updatestats

mvideos

msolo

mstraight
mlesbian Y - Yes, doesthis; N - No, doesn't do this
mfetish
mmast

mtoys

150

Schema Reference: Models

model activitiesflags

fieldname

possible values

mother

Table 16.6. mcstatus: accuracy of home country field: defined values

mcstatus

C Certain - country of origin stated in bio

Q Quasi-authoritative - from third party site

I Inferred - from location or other models seen with
G Guess - based on photographer or building style
N None

Table 16.7. mrace: race of the model: defined values

mrace

Caucasian Caucasian - European Descent aka White

Oriental Oriental - Chinese, Japanese, SE Asian

Asian Indian Sub-Continent - India, Pakistan, etc

Negroid Negroid - of African Descent aka Black

Aboriginal Aboriginal - indigenous peoples - First Nation, Polynesian, etc
Latina Latin American - aka Hispanic

Mixed Mixed race and others

Table 16.8. mbuild: body type of the model: defined values

mbuild

\% Very Slim
S Slim

M Medium
H Heavy

Table 16.9. mlabia; about the model'slabia: defined values

mlabia

I Internal (No Projection)
C Cameltoe

T Thin Projection

151

Schema Reference: Models

mlabia

Broad Projection

Table 16.10. mstarsign: The models astrological star sign

mstarsign

null or " Unknown

Aries Aries (21 Mar)
Taurus Taurus (21 Apr)
Gemini Gemini (21 May)
Cancer Cancer (21 June)
Leo Leo (22 Jul)

Virgo Virgo (23 Aug)
Libra Libra (23 Sep)
Scor pio Scorpio (23 Oct)
Sagittarius Sagittarius (22 Nov)
Capricorn Carpicorn (22 Dec)
Aquarius Aquarius (21 Jan)
Pisces Pisces (20 Feb)

Table 16.11. vital statistics: meanings

vital statistics

mweight Weight in Kilos

mheight Height in centimetres

mvitbust Bust measurement in centimetres (vital stats part 1)
mvitwaist Waist measurement in centimetres (vital stats part 2)
mvithips Hips measurement in centimetres (vital stats part 3)
mdr ess Dress size given in European standard sizes

152

Chapter 17. Schema Reference:
Download

Download: Schema SQL

create table downl oad

(downl oadno nunber (7) prinmary key,

dnodel no nunber (6) references nodel s,
dset no nunber (9) references sets,
dst at us char (1),
dtype char (1),
dsite var char 2(20) not null
dkey var char 2(30),
dset key var char 2(40),
dset nane var char 2(240),
dsetfl ag char (1),
dnot es var char 2(240),
durl var char 2(240),
dar chi ve var char 2(240),
dsi gnature var char 2(82),
dsi ze nunber (12),
dpr oddat e dat e
drel date dat e
dphot og varchar 2(6) references photographer
dbr andi ng var char 2(20),
dpul | ed dat e,
dadded dat e,
danended dat e
)
Note

The dsize field was expanded from 9 digitsto 12 digitsin Wacs 0.9.2 to allow for video files

larger than 1GB to be correctly described.

Download: Defined Values

Table 17.1. dstatus: download status: defined values

dstatus

U Not Yet Attempted

F Failed - Retry when possible

S Successful - set registered in database, available
P Pending - downloaded, awaiting unpacking

153

Schema Reference: Download

dstatus

A Aborted - don't download for some reason

D Deferred - held back from being downloaded

R Relationship Entry - a second model for a set

L Liasion - a proto-Relationship Entry not yet linked

E Error - not the right model, etc

I In Progress - download currently in progress

X Incomplete - record of it's existance but too little info to download it

Table 17.2. dtype: download set type: defined values

dtype

I Image Set
Vv Video Clip
A Audio File

Table 17.3. dsetflag: Suggested value for scatflag based on parsing result

dsetflag

Note

Any valid value for scatflag from the sets table. Thisis a hint on the set type based upon
the parsing process picking out keywords

154

Chapter 18. Schema Reference:
Photographer

Photographer: Schema SQL

create tabl e photographer

(pref varchar 2(6) primry key,
pnane var char 2(40),
pal i ases var char 2(80),
pgender char (1),
paddr ess var char 2(120),
penai | var char 2(80),
pwebsite var char 2(80),
pusual var char 2(40),
pr egi on var char 2(20),
pcountry var char 2(50),
pl ocati on var char 2(50),
pstyl edesc var char 2(80),
prating nunber (2),
phar dness nunber (2),
psol o char (1),
pt oys char (1),
pl esbi an char (1),
pstrai ght char (1),
pgroup char (1),
pfetish char (1),
pdi git al char (1),
pfilm char (1),
pvi deo char (1),
phdvi deo char (1),
pcamer a var char 2(40),
pcammot es var char 2(80),
pconment s var char 2(240),
pnot es var char 2(240),
pbi ogr aphy var char 2(1024),
padded dat e,
panended dat e

)

Photographer: Defined Values

Table 18.1. pgender: gender of the photographer: defined values

pgender
M Mae
F Female

155

Schema Reference: Photographer

pgender

Unknown

Table 18.2. pregion:

geographical location of the photographer: defined values

pregion
Europe Europe
North America USA and Canada

South America South and Central America

Middle East Middle East (brave photographer!)

Asia Asia (Indiaand the Indian Sub-continent ONLY')
Orient Orient (Asia excluding Indian Sub-continent)
Australasia Australiaand New Zealand

Africa Africa

Other Other

Table 18.3. prating:

overall rating of photographer: defined values

prating

None

Awful - poor equipment and technique

Poor - uninteresting and badly composed/exposed work

Reasonable - technically OK, but very unenterprising

Good - good technique, interesting compositions and direction

g h|{W|N|F| O

Excellent - Excellent technique, interesting and challenging compositions and
direction

Table 18.4. phardness: rating of how explicit this photographer can be: defined

values
phar dness
0 None - Not Rated
1 Soft-focus (very arty)
2 Glamour - sharp but no open leg, genital detail, etc
3 Normal - wide range of shots but not particularly strong
4 Hard (close-ups)
5 Fetish - pretty extreme, gaping, etc

156

Schema Reference: Photographer

Table 18.5. photographer activites cover ed flags. defined values

photographer activities covered flags

fieldname

possible values

psolo

ptoys

pleshian

pstraight

Y - Yes, doesthis; N - No, doesn't do this; O - Occasionally doesthis

pgroup

pfetish

Table 18.6. photographer technologies used flags. defined values

photographer technologies used flags

fieldname possible values
pdigital
pfilm]]
o Y - Yes, usesthistechnology; N - No, doesn't use this technology.
pvideo
phdvideo

157

Chapter 19. Schema Reference: Tag
Tag: Schema SQL

create table tag

(tagno nunber (9) prinmary key,
t nodel no nunber (6) references nodel s,
t set no nunber (9) references sets,
tstatus char (1),
tflag char (1),
t group nunber (6),
t desc var char 2(40),
t owner var char 2(20),
texpiry dat e
t added dat e,
t anended dat e

)

Tag: Defined Values

Table 19.1. tstatus: tag entry status: defined values

tstatus

T Temporary - expire as per expiry rules

Vv Viewed, Temporary - expire as per expiry rules, hide from index
P Permanent - don't expire, show in index

A Archived - don't expire, don't show in normal indexes

Table 19.2. tflag: tag content type status: defined values

tflag
M Model-based tag entry
S Set-based tag entry

158

Chapter 20. Schema Reference: Vendor
Vendor: Schema SQL

create tabl e vendor

(vsite varchar 2(20) primary key,
vnane var char 2(45),
vshort nane varchar 2(20) not null
vregi on var char 2(20),
vcountry var char 2(50),
vwebur | var char 2(120),
vsi gnup var char 2(120),
vrating nunber (2),
vtechrate nunber (2),
vuscdecl var char 2(240),
vcur rent char (1),
vshow char (1),
vsubscri bed char (1),
vunti | dat e,
vuser name var char 2(80),
vpassword var char 2(30),
vidting nunber (2),
vidtvid nunber (2),
vconexcl var char 2(240),
vidi rectory var char 2(240),
vidi ruse char (1),

vidi r pages nunber (3),
vipage var char 2(240),
vipaguse char (1),

vibi o var char 2(240),
vibi ouse char (1),

vnvi deos var char 2(240),
vnvi duse char (1),

vvi dpage var char 2(240),
vvi duse char (1),

Vi mgpage var char 2(240),
Vi mguse char (1),

val t page var char 2(240),
val tuse char (1),
VSrving var char 2(240),
vsrvvid var char 2(240),
vimul ti ng char (1),

vl tvi d char (1),

vnot es var char 2(240),
vadded dat e,

vamended date

159

Schema Reference: Vendor

Vendor: Defined Values

Table 20.1. vcurrent: vendor existance status: defined values

vecurrent
Y Yes- gtill an active site
N No - no longer trading at that web address

Table 20.2. vshow: vendor index inclusion status; defined values

vshow
Note
This option only really affects vendormode and vendor-based lists of models; if you don't
use vendor mode, it's not likely to be relevant.

Y Yes- show in indices

N No - hide from indices

Table 20.3. vmdiruse et al: vendor URL auto-usuability status: defined values

vmdiruseet al
fieldname page purpose possible values
vmdiruse Model Directory |Y link is (auto)usable
vmpaguse Model Page N link is not (auto)usable
vmbiouse Model Biography |S link usable only with session key
vmviduse Model's Videos

Page
vviduse Video Set Page
vimguse Image Set Page
valtuse Alternate Image Set

Page

160

Chapter 21. Schema Reference: Conn

Conn: Schema SQL

create table conn

(centryno
cgroup
corder
cfl ag
cstatus
cnodel no
csetno
cphot og
ctype
cdesc
ccomment s
cpath
cadded
camended

)
Conn: Defined Values

Warning

nunmber (9) primary key,
nunber (6),

nunber (3),

char (1),

char (1),

nunber (6) references nodel s,
nunber (9) references sets,
varchar 2(6) references photographer
var char 2(20) not null

var char 2(80),

var char 2(240),

var char 2(160)

dat e,

dat e

Conn (connections) isarecent addition and not all parts of the toolchain arein place yet. As

the management tools are added, it is expected that at least the legal values for fields will

change and be expanded.

Table 21.1. cflag: connection type: defined values

cflag
A Ad-Hoc - A casud index of some random theme
G Gallery - A dlightly more focused collection with a specific concept behind it.

Table 21.2. cstatus: connection entry status: defined values

cstatus
M Manually Added
T Imported from a Tag set

161

Chapter 22. Schema Reference:
Keyword

Keyword: Schema SQL

create tabl e keyword

(kentryno nunber (9) prinary key,
kfl ag char (1),
kwor d varchar (30) not null
kexcl usi ons var char (120),
kil oc var char (20),
ki score nunber (1),
ki cat char (1),
ki cscore nunber (1),
ki det var char (40),
ki dscore nunber (1),
kiattr var char (30),
ki ascore nunber (1),
ki wear var char (40),
ki wscore nunber (1),
ki ot her var char (40),
ki oscore nunber (1),
knot es var char (80),
kadded dat e,
kamended dat e

)

Note

FromWACS0.8.2, the kiother and kioscore fields are used to determine values for the sattire
field inthe sets schema. New fieldskiwear and kiwscore wereintroduced in WACS0.8.5 and
will be used for values for the sattire fields from WACS 0.9.x freeing kiother and kioscore
for their original purpose of being spare for future functionality.

Keyword: Defined Values

Table 22.1. kflag: active entry status: defined values

kflag
A Appliesto All Added
N Not Active (Ignore)

162

Chapter 23. Schema Reference:
Wacsuser

User: Schema SQL

Note

This schema has been renamed wacsuser as on certain DBs (eg Oracle) user is a reserved
word.

create table wacsuser

(userid nunmber (9) primary key,
user name var char 2(20) not null
upassword var char 2(20) not null
ust at us char (1),
ut ype char (1),
uvisits nunber (6),
ucl ass var char 2(20) not null
upr excl var char 2(20) ,
uprdi rect char (1),
upr page var char 2(20),
uprscal e var char 2(20),
uprsi ze var char 2(12),
uprqual ity nunber (3),
upr del ay nunber (3),
uprunits char (1),
uprt hunbs var char 2(20),
upr ot her var char 2(20),
ur egi ster dat e,
uexpiry dat e,
ul ast act dat e,
ul ast conn dat e,
ul ast conm dat e,
ul asttopic var char 2(40),
upur ge dat e,
uermai | var char 2(120),
ual t enai | var char 2(120),
uscreennane var char 2(30),
ur eal nane var char 2(80),
uaddressl var char 2(80),
uaddr ess? var char 2(80),
ucity var char 2(50),
uprovi nce var char 2(30),
ucountry var char 2(30),
upost code var char 2(20),
ut el ephone var char 2(30),
ual | owed char (1),
ut hi rdp char (1),

163

Schema Reference: Wacsuser

uj oi nthru var char 2(30),
ur ef erence var char 2(120),
upayanount nunber (4, 2),
upaycurr var char 2(10),
ul i nkfrom var char 2(120),
urebill char (1),
uconmpay char (1),

ucomm ssi on var char 2(80),
ucommf ee nunber (4, 2),
uconmmcur r var char 2(10),
uconmper c nunber (3),
unot es var char 2(240),
uadded dat e,

uanended date

Note

The wacsuser schema is a new table introduced in WACS 0.8.5; it is not available or
supported prior to that release. Only certain fields of thistable are supported and used within
the standard WACS tools; the additional fields are utilised by the WacsPro commercial
site management toolset available seperately from Bevtec Communications Ltd [http:/
www.bevteccom.co.uk/]. To ensure compatibility, the recommended valuesused in al fields
are described here.

User: Defined Values

Table 23.1. ustatus: User Account Status; defined values

ustatus

A Active - thisaccount is currently active

E Expired - this user account has expired

P Pending - user needs to compl ete verification step

S Suspended - access temporarily suspended - leaked password, etc

Table 23.2. utype: User Type: defined values

utype

A Administrator - account used for system management
F Friend (or Freebie) - account granted free access

S Subscriber - a subscription account

Table 23.3. uclass: User Class: defined values

uclass

viewer

anormal user account

164

http://www.bevteccom.co.uk/
http://www.bevteccom.co.uk/
http://www.bevteccom.co.uk/

Schema Reference: Wacsuser

uclass

power power user with enhanced rights, can see most of the administration tools but
can't make significant changesto the collection. Primarily intended for support
staff

admin system and collection administrator - full administrative rights

165

Chapter 24. Schema Reference: Attrib
Attrib: Schema SQL

Note

The attrib schema was introduced in WACS 0.8.5 but is not used at al by that release. It is
used in Wacs 0.8.6 and higher.

create table attrib

(atrecno nunber (9) primary key,
at keyword var char 2(30),
at sour ce char (1),
atrecogni se char (1),
at al | owadd char (1),
at di spl ay char (1),
at shortdesc var char 2(50),
at | ongdesc var char 2(240),
aticon var char 2(160),
at group var char 2(30),
atinplicit char (1),
atval i dset char (1),
at val i dnodel char (1),
at val i dot her char (1),
at mar kset char (1),
at mar knodel char (1),
at mar kot her char (1),
at set search char (1),
at nodsear ch char (1),
at conbsear ch char (1),
at ot hsear ch char (1),
at setdetail char (1),
at noddet ai | char (1),
at conbdet ai | char (1),
at ot hdet ai | char (1),
at not es var char 2(240),
at added dat e,
at anended date

)
Attrib: Defined Values

The at recno is a sequentialy incremented reference number. Standard attributes typicaly will be
numbered between 1 and 99, extended attributes between 100 and 499. Custom attributes should be given
anumber from 500 upwards to avoid clashes with attributes added to future WACS distributions.

166

Schema Reference: Attrib

Table 24.1. atsour ce: attribute source: defined values

atsource

S Standard - normal wacs attributes

E Extended - more unusual wacs attributes
C Custom - locally added attribute

Note

For more information on these attributes and their meanings, please see the explanation in
the Customisation chapter of the administration guide.

167

Chapter 25. Schema Reference: Notes

Notes: Schema SQL

create table notes

(nentryno
ntype
nor der
ntitle
nt ext
nst at us
nnext
nexpiry
nnmodel no
nset no
nphot og
nconn
ncomrent s
nadded
nanended

)
Notes: Defined Values

nunber (9) primary key,

char (1),

nunber (3),

var char 2(80),

var char 2(2048),

char (1),

nunber (9) references notes,
dat e,

nunber (6) references nodel s,
nunber (9) references sets,
varchar 2(6) references photographers,
nunber (6),

varchar 2(120),

dat e,

dat e

Warning
Notesis abrand new addition as at Wacs 0.8.5 and is not going to be used until at least the

next release of Wacs. It is intended to provide a mechanism for attaching additional text to
models, connections and as abasis for asimple site blog mechanism. All values given below

are subject to change therefore.

Table 25.1. ntype: notestype: defined values

ntype

B Site Blog entry

C Connection Descriptive Text - more about a connection
M Model Biography - an extended biography

Index

A

addassoc, 124
addconticons, 94
addheadercss, 78
addkeyicons, 85
uUsing ..., 45
addlinks, 87
addratings, 86
addrelicons, 93
add_auth, 59
alloc_nextkey, 127
alsofeaturing, 92
assoc
astatus values, 145
Field Listing, 145
making connections, 32
astatus, 145
attrib
Field Listing, 166
auth_error, 57
auth get_attr, 64
auth_user, 58
Automatic Thumbnails
Size, count and position settings (media_settings), 133

C

cacheloc, 68
callframe, 114
cflag, 161
checkexclude, 75
checkindex, 76
check_auth, 56
Configuration
Reading The..., 6
Configuration Values
Getting..., 7
conf_dosubs, 63
conf_get_éattr, 7, 62
conn
cflag values, 161
cstatus values, 161
Field Listing, 161
Connection
Database, Initidising..., 6
contentlink, 90
using...., 47
cstatus, 161

D
Data Architecture, 32

Database
Environment Variables, 7
Fetching Records..., 9

Initialising Connection To..., 6

dberror, 65

describeher, 82
WacsUl: Introducing, 43

divideup, 74

download
dsetflag values, 154
dstatus values, 153
dtype values, 154
Field Listing, 153

dsetflag, 154

dstatus, 153

dtype, 154

Dynamic Content, 50

F

findmodel, 109
findrecentmodels, 111
findrecentsets, 110
find_config_location, 61
foundatsite, 115

G

getcontinfo, 119
getgallery, 113
geticonlist, 72
getrelated, 101
gettoday, 66
gettypecolour, 73
getvaluename, 71
getvideoext, 102

I
iactive, 146
iconlink, 88
using, 46
icons
adding set ..., 29
idmap
Field Listing, 146
iactive values, 146

isite recommended values, 146

istatus values, 146
isite, 146
istatus, 146

K

keyword
Field Listing, 162
kflag values, 162

169

Index

kflag, 162

kwscore get, 118
kwscore process, 117
kwscore reset, 116

L

linkfromprevious, 120
linkrelated, 121
loadattrvalues, 70

M

makedbsafe, 77

masthead, 104

mbuild, 151

mcstatus, 151

media get attr, 131

media_scan, 130

media_settings, 133

media thumbs, 132

menu_get_body, 98

menu_get_default, 96

menu_get_entry, 99

menu_get_handler, 100

menu_get _title, 97

mfetish, 150

mflag, 150

mheight, 152

miabia, 151

mleshian, 150

mmast, 150

modelheads, 108

model headshot, 112

modelmast, 106

models
activities values, 150
connection to sets, 32
Field Listing, 148
hiding unwanted ones, 37
mbuild values, 151
mcstatus values, 151
mflag values, 150
mlabiavalues, 151
mpussy values, 150
mrace values, 151
mrating values, 149
mstarsign values, 152
mstatus values, 149
vital statisticsfields, 152

modelsel.php, 50

Modules
Importing WACS API, 5

mother, 150

mpussy, 150

mrace, 151

mrating, 149

msolo, 150

mstarsign, 152

mstatus, 149

mstraight, 150

mtoys, 150

mvideos, 150

mvitbust, 152

mvithips, 152

mvitwaist, 152

mweight, 152

MySimple (Sample Program)
Perl Version Source Code, 12
Php Version Source Code, 11
Sample Run Output, 13

MySimple2 (Sample Program)
Sample Run Output, 16

MySimple3 (Sample Program)
Sample Run Output, 19

MySimple4 (Sample Program)
Sample Run Output, 20

MySimpleb (Sample Program)
Sample Run Output, 23

N

notes
Field Listing, 168
ntype values, 168
ntype, 168

P

pdigital, 157

pfetish, 156

pfilm, 157

pgender, 155

pgroup, 156

phardness, 156

phdvideo, 157

photographer
activities covered values, 156
Field Listing, 155
pgender values, 155
phardness values, 156
prating values, 156
pregion values, 156
technologies used values, 157

pleshbian, 156

prating, 156

preference exclusions, 41

pregion, 156

psolo, 156

pstraight, 156

170

Index

ptoys, 156
pvideo, 157

R

readable

making Camel-Style ..., 30
read conf, 55
read menu, 95
related_set_info, 125
Relational Database Model, 32
removeconflicts, 123
removedups, 122

S

saspect, 144
sauto, 140
scatflag, 142
selections, 37
serrors, 142
Set Relationship Links, 38
SetDisp (Sample Program)
Sample Run Output, 29
setdisp program, 26
SetDisp2 (Sample Program)
Sample Run Output, 30
SetDisp3 (Sample Program)
Sample Run Output, 31
SetDisp4 (Sample Program)
Sample Run Output, 35
setgroupperms, 79
sets
connecting to models, 32
Field Listing, 138
hiding unwanted ones, 38
introduction to displaying, 26
linking relations, 38
saspect values, 144
sattire recommended values, 143
sauto values, 140
scatflag values, 142
serrors values, 142
sformat values, 141
sidlogo values, 141
sinter, 141
slocation recommended values, 142
srank values, 142
srating values, 140
sstatus values, 140
stechqual values, 140
stype values, 139
suscattr values, 144
svariety values, 141
sformat, 141

sidlogo, 141
sinter, 141
Skins, 49
dlocation, 142
SQL

Simple Example, 8
srank, 142

How it works..., 38
srating, 140
sstatus, 140
stechqual, 140
Structure of aWACS app, 5
stype, 139
suscettr, 144
svariety, 141

T
tag
Field Listing, 158
tflag values, 158
tstatus values, 158
text
Camd-Style, 30
tflag, 158
thumblink, 91
Using...., 46
timecomps, 67
treemkdir, 80
tstatus, 158

U

uclass, 164
update_auth, 60
user
Now known as wacsuser, 163
uclass values, 164
ustatus values, 164
utype values, 164
Using relationships, 32
ustatus, 164
utype, 164

\%

veurrent, 160

vendlink, 69

vendor
Field Listing, 159
veurrent values, 160
vmdiruse values, 160
vshow values, 160

vmdiruse, 160

vshow, 160

171

Index

W

Wacs Core

API Reference Pages, 54

WACS Core
addheadercss, 78
add_auth, 59
auth_error, 57
auth get_attr, 64
auth _user, 58
cacheloc, 68
checkexclude, 75
checkindex, 76
check_auth, 56
conf_dosubs, 63
conf_get_attr, 62
dberror, 65
divideup, 74

find_config_location, 61

geticonlist, 72
gettoday, 66
gettypecolour, 73
getvaluename, 71
loadattrvalues, 70
makedbsafe, 77
read conf, 55
setgroupperms, 79
timecomps, 67
treemkdir, 80
update_auth, 60
vendlink, 69
Wacs|d

API Reference Pages, 130

WACSId
read conf, 130

WACS Std
addassoc, 124
alloc_nextkey, 127
calframe, 114
findmodel, 109
findrecentmodels, 111
findrecentsets, 110
foundatsite, 115
getcontinfo, 119
getgallery, 113
kwscore get, 118
kwscore process, 117
kwscore reset, 116
linkfromprevious, 120
linkrelated, 121
masthead, 104
modelheads, 108
model headshot, 112
modelmast, 106

related_set_info, 125
removeconflicts, 123
removedups, 122
wacshlogtodb, 126
WACSUI
addconticons, 94
addkeyicons, 45, 85
addlinks, 87
addratings, 86
addrelicons, 93
alsofeaturing, 92
contentlink, 47, 90
describeher, 43, 82
getrelated, 101
getvideoext, 102
iconlink, 46, 88

Including Support For..., 43

Introduction To..., 43
menu_get_body, 98
menu_get_default, 96
menu_get_entry, 99
menu_get_handler, 100
menu_get _title, 97
read menu, 95
thumblink, 46, 91
whatshedoes, 44, 84
Wacs-PHP
Skins, 49

Styling The Simple Skin, 50

The Simple Skin, 49
wacshlogtodb, 126
Weacsld

media get attr, 131
WacslD

media_settings, 133

media_thumbs, 132
wacsuser

Field Listing, 163
Web 2.0, 50
whatshedoes, 84

Using ..., 44

172

