
Wacs Programming Guide
Second Edition

for WACS 0.8.1

B "Beaky" King
Published 22nd August 2008

Wacs Programming Guide
by B "Beaky" King

for WACS 0.8.1

Published 22nd August 2008
Copyright © 2006, 2007, 2008 B King

Abstract

WACS is a tool for building Adult Web Sites; it is equally suitable for managing a private collection or building
a commercial web site. It has many best of breed features including dynamic filtering, model catalogs, automatic
download and powerful search engine. It comes with a powerful API (application programming interface) implemented
in both Perl and PHP5 languages to allow web developers to leverage it's facilities from their own programs.

This book describes the application programming interface provided by WACS, and how to utilise it from perl and
Php languages. It provides an extensive introductory tutorial with a large number of worked example programs as
well as a complete API reference manual. Additionally it provides a schema reference for the WACS database tables
as understanding the fields available to you is central to writing programs that utilitise it. The intended audience is
web developers and WACS site managers who wish to tailor an existing WACS installation to meet their precise
requirements; people merely wishing to use or manage an existing WACS installation may well find the default
configurations provided suffice.

iii

Table of Contents
I. WACS API Programming Tutorial ... 1

1. Introduction ... 2
Overview .. 2

About This Book .. 2
About The Examples ... 2

2. Basics: Getting Started ... 3
Outline ... 3
A First WACS Program .. 3

Modules: Importing .. 3
Configuration And Security .. 4
Initialising Database Connection ... 4
Fetching Some Records ... 6
Showing The Results .. 7
Finishing Off ... 9

Putting It All Together .. 9
Running MySimple ... 12
Reviewing The First Program ... 12

3. Using More Database Fields ... 13
Adding Model Icons .. 13
More Model Information .. 14

Using HTML tables .. 15
Adding The Model Details ... 17

Adding Other Icons ... 19
Improving Error Reporting ... 21

4. Set Display Routines ... 24
About Set Display ... 24

Sets: The Basic Bones ... 24
Adding Icons ... 27
Making The Text More Readable .. 28

Connecting Sets And Models .. 30
Understanding The Data Architecture ... 30
Using Relationships With Assoc .. 30
An Example Using Assoc ... 31

5. The User Interface Toolkit .. 35
Introducing WacsUI .. 35

Including WacsUI support .. 35
WacsUI: DescribeHer .. 35
The addkeyicons function ... 36
WacsUI: Other Functions ... 36

Conclusions ... 36
II. WACS API Programming Reference .. 38

6. WACS API: Core Module .. 39
Core Module: Summary ... 39
Core Module: Reference .. 39

7. WACS API: User Interface Module .. 62
User Interface Module: Summary .. 62
User Interface Module: Reference .. 62

8. WACS API: Standard Components Module ... 74
Standard Components Module: Summary .. 74
Standard Components Module: Reference ... 74

9. WACS API: Identification Module ... 84

Wacs Programming Guide

iv

Identification Module: Summary .. 84
III. WACS Database Schema .. 86

10. Schema Reference: Sets .. 87
Sets: Schema SQL .. 87
Sets: Defined Values ... 88

11. Schema Reference: Assoc ... 92
Assoc: Schema SQL .. 92
Assoc: Defined Values ... 92

12. Schema Reference: Idmap ... 93
Idmap: Schema SQL ... 93
Idmap: Defined Values .. 93

13. Schema Reference: Models ... 95
Models: Schema SQL .. 95
Models: Defined Values ... 96

14. Schema Reference: Download .. 99
Download: Schema SQL .. 99
Download: Defined Values ... 99

15. Schema Reference: Photographer .. 101
Photographer: Schema SQL .. 101
Photographer: Defined Values ... 101

16. Schema Reference: Tag ... 104
Tag: Schema SQL ... 104
Tag: Defined Values .. 104

17. Schema Reference: Vendor .. 105
Vendor: Schema SQL .. 105
Vendor: Defined Values ... 106

18. Schema Reference: Conn ... 107
Conn: Schema SQL ... 107
Conn: Defined Values .. 107

19. Schema Reference: Keyword ... 108
Keyword: Schema SQL .. 108
Keyword: Defined Values ... 108

Index .. 109

v

List of Tables
1. The Key WACS Modules ... 38
6.1. Function Summary: Core Module .. 39
7.1. Function Summary: User Interface Module .. 62
8.1. Function Summary: Standard Components Module ... 74
9.1. Function Summary: Identification Module ... 85
10.1. stype: Type of Set: defined values .. 88
10.2. sstatus: Status of Set: defined values .. 88
10.3. sauto: Automatic Update of Set Allowed?: defined values ... 89
10.4. srating: Overall Rating For The Set: defined values ... 89
10.5. stechqual: Technical Quality Rating For The Set: defined values .. 89
10.6. svariety: Unusualness Rating For The Set: defined values ... 89
10.7. sformat: Format of the File(s) In The Set: defined values .. 90
10.8. sidlogo: Presence of Burnt-in Logo: defined values ... 90
10.9. serrors: Presence of Known Errors: defined values .. 90
10.10. scatflag: Generalised type of the set: defined values ... 90
10.11. slocation: generalised description of locations: recommended values 91
10.12. suscattr: how to generate the 18 USC 2257 declaration: defined values 91
11.1. astatus: association status: defined values .. 92
12.1. istatus: idmap status: defined values ... 93
12.2. iactive: model activity status as this identity: defined values .. 93
12.3. isite: Some recommended site abbrievations: recommended values 94
13.1. mstatus: model record status: defined values .. 96
13.2. mrating: model rating: defined values ... 96
13.3. mpussy: model's normal pubic hair style: defined values ... 96
13.4. mflag: special marking flag for models: defined values .. 97
13.5. model activites flags: defined values ... 97
13.6. mcstatus: accuracy of home country field: defined values ... 97
13.7. mrace: race of the model: defined values ... 98
13.8. mbuild: body type of the model: defined values .. 98
13.9. vital statistics: meanings ... 98
14.1. dstatus: download status: defined values .. 99
14.2. dtype: download set type: defined values ... 100
14.3. dsetflag: Suggested value for scatflag based on parsing result .. 100
15.1. pgender: gender of the photographer: defined values .. 102
15.2. pregion: geographical location of the photographer: defined values 102
15.3. prating: overall rating of photographer: defined values .. 102
15.4. phardness: rating of how explicit this photographer can be: defined values 102
15.5. photographer activites covered flags: defined values .. 103
15.6. photographer technologies used flags: defined values ... 103
16.1. tstatus: tag entry status: defined values .. 104
16.2. tflag: tag content type status: defined values ... 104
17.1. vcurrent: vendor existance status: defined values ... 106
17.2. vshow: vendor index inclusion status: defined values ... 106
17.3. vmdiruse et al: vendor URL auto-usuability status: defined values 106
18.1. cflag: connection type: defined values ... 107
18.2. cstatus: connection entry status: defined values ... 107
19.1. kflag: active entry status: defined values .. 108

vi

List of Examples
2.1. WACS Module Import .. 3
2.2. Config and Security .. 4
2.3. Database Connection Initialisation ... 5
2.4. Database Query .. 6
2.5. Outputing The List ... 8
2.6. Php: Complete Simple Program ... 10
2.7. Perl: Complete Simple Program .. 11
3.1. Modified Output Loop with Icon Code ... 13
3.2. Modified SQL command for more Model Info ... 14
3.3. New version of the loop using tables .. 16
3.4. Adding Model Information ... 18
3.5. Adding A Rating Icon ... 20
3.6. Calling dberror for better error reporting ... 22
4.1. The Basic SetDisp Program .. 25
4.2. Adding A Set Icon .. 27
4.3. Making Camel-Style Text Readable ... 29
4.4. Modified Icon Cell .. 31
4.5. getmodel Subroutine .. 32
4.6. Calling The getmodel Function .. 33
5.1. WacsUI initialisation ... 35
5.2. Using WacsUI: describeher .. 35
5.3. Using AddKeyIcons .. 36

Part I. WACS API Programming Tutorial
This part of the WACS Programming Guide is designed to introduce you to programming using the WACS API -
examples will be given in both Perl and PHP5 dialects so you can choose to work in either language.

Chapter 1, Introduction
Chapter 2, Basics: Getting Started
Chapter 3, Using More Database Fields
Chapter 4, Set Display Routines
Chapter 5, The User Interface Toolkit

2

Chapter 1. Introduction
Overview

Welcome to WACS, Web-based Adult Content Server, a free software package for the management of
material of an "Adult Nature" (or basically whatever euphermism for porn you prefer). It is web-based and
can be used for the management of an existing collection, as a download manager, or as a back-end system
for running a commercial adult web site. It is dramatically different from most other image gallery systems
in that it understands photo sets and video clips as basic concepts, instead of single photographs. It also
includes far more specialised tagging, source, relationship and attribute marking concepts than other more
generalised systems. WACS' abilities in the areas of searching and dynamic filtering are really industry-
leading in their power and flexibility.

About This Book
This electronic book, the WACS Programming Guide, is designed to act both as an introduction to
programming with the WACS API in either perl or PHP, and as a reference volume for both the API
itself and the database schema. This book assumes you already have a basic knowledge of programming
in your choosen language (PHP5 or perl5) and have some understanding of databases and in particular
SQL (Structure Query Language). Some familiarity with WACS at a user level would also be a distinct
advantage, and I'd strongly recommend working through the companion user guide first - who knows it
might give you some ideas about neat extra features you can add to your own site. All documentation for
WACS is available both within the distribution and from the WACS Web Site at Sourceforge.net [http://
wacsip.sourceforge.net/].

It is important to stress that ALL of the collection management tools are implemented in Perl and the PHP
interface is an optional addition to, not an alternative to, the core Wacs system which is perl based. Given
the relative youth of the WACS system, php5 has been selected for the implementation to save future
porting efforts as it is expected that php5 or later will be the minimum common standard by the time Wacs
reaches 1.0. There is no intention to support older dialects of php at this point.

As the WACS software package is Open Source, we're always looking for contributions; if you create a
site design (or prototype for one) which you don't end up using, maybe you would consider donating it
to the repository of sample WACS Skins. We can always substitute our own artwork into already written
web application code.

About The Examples
For copyright/licensing reasons, the example images feature sets from photoshoots by the main developer
of WACS (Beaky) and a friend of his. These sets will be available on our demonstration site when that
goes live. Please understand that due to the bandwidth and storage costs in running such a server on the
internet, and the need to verify (as best we can) that the applicant is an adult, there is a small charge for
access to the site.

http://wacsip.sourceforge.net/
http://wacsip.sourceforge.net/
http://wacsip.sourceforge.net/

3

Chapter 2. Basics: Getting Started
Outline

In this chapter we're going to talk about the basic first steps in making use of the WACS API from your
own programs. We're going to assume that you've got a WACS server you can use up and running; that you
know where things are on it and that you have appropriate write access to the web document tree (if you're
working in PHP) or the cgi-bin directory (if you're working in Perl). Hopefully you'll have both some
models and a few image sets known in the WACS system to work with. For these first code examples, you
could merely load the sample model profiles we've provided in the samples directory of the WACS
distribution.

While the finished code of the sample programs featured here is available in the samples directory of the
WACS Core distribution (for the Perl verion) or the WACS-php distribution (for the PHP5 version), you
may wish to type it in as you go along as an aid to learning how to use the interface. If you do, we'd
recommend calling this file mysimple for perl, or mysimple.php for PHP. For consistency, we're
going to put the PHP dialect first and then the Perl dialect in each of the examples.

The basic structure of your first WACS application will consist of five steps; these are:

1. import the WACS API modules

2. read configuration and check access rights

3. initialise the database connection

4. run an appropriate database query

5. retrieve records and display them

A First WACS Program

Modules: Importing
The very first step is to import the WACS API modules into your program file along with those standard
modules needed to access the database. These files should be in the right location already and should just
be found without any additional specification of where they are.

Example 2.1. WACS Module Import

require_once "wacs.php";
require_once "DB.php";

$wacs = new Wacs;

The same code segment implemented in perl looks like:

Basics: Getting Started

4

use Wacs;
use DBI;

Note

The PHP interface requires an Object Handle to use when accessing the WACS module
which we're simply calling $wacs. Perl doesn't need such a construct - there is simply the
one instance.

Configuration And Security

The second step is to read the standard WACS configuration file to find out where everything is, and then
check that this user is allowed to access the WACS system. This is a two step process, and the reading
of the configuration file must be done first; otherwise WACS doesn't know where to look for the security
files it needs to determine whether this user should be given access or not.

Example 2.2. Config and Security

// read the Wacs configuration files
$wacs->read_conf();

// check the auth(entication and authorisation) of this user
$wacs->check_auth($_SERVER['REMOTE_ADDR'], 1);

and here is the same thing again in the perl dialect:

read the Wacs configuration files
read_conf;

check the auth(entication and authorisation) of this user
check_auth($ENV{"REMOTE_ADDR"}, 1);

Initialising Database Connection

The third step is to initialise the database connection. Since some databases require an environment variable
to determine where their configuration files have been stored, this needs to be set first. Wacs provides
for this and this code will create that environment variable, if needed, and then proceed to establish the
database connection itself.

Basics: Getting Started

5

Example 2.3. Database Connection Initialisation

// database initialisation
// - establish environment variable
$dbienv = $wacs->conf_get_attr("database","dbienvvar");
if(! empty($dbienv))
{
 putenv($dbienv."=".$wacs->conf_get_attr("database","dbienvvalue"));
}
// - connect to the database
$dbhandle= DB::connect($wacs->conf_get_attr("database","phpdbconnect"));
if(DB::iserror($dbhandle))
{
 die("Can't connect to database\nReason:".$dbhandle->getMessage."\n");
}
$dbhandle->setFetchMode(DB_FETCHMODE_ORDERED);

and here's how we do it in perl:

database initialisation
- establish environment variable
$dbienv = conf_get_attr("database","dbienvvar");
if($dbienv ne "")
{
 $ENV{$dbienv}= conf_get_attr("database","dbienvvalue");
}
- connect to the database
$dbhandle=DBI->connect(conf_get_attr("database","dbiconnect"),
 conf_get_attr("database","dbuser"),
 conf_get_attr("database","dbpass")) ||
die("Can't connect to database\nReason given was $DBI::errstr\n");

OK, let's just study this code for a moment. It first calls the WACS API function conf_get_attr with the
section parameter of database as it wants database related configuration information, and an argument
of dbienvvar. The WACS API function conf_get_attr is short for configuration get attribute and returns
the value of the configuration file parameter of that name or it's default value. The dbienvvar means
database interface environment variable. A typical value for this might be something like ORACLE_HOME
which is the environment variable that Oracle 10g and 11i requires to be set in order to find it's current
configuration.

The next line of the code checks to see if we got back an actual variable name (eg ORACLE_HOME) or an
empty string (ie nothing). If we were given a valid variable name, then we're going to need to set it the
value it should be, which again we can get from the configuration file, this time called dbienvvalue
which is short for database interface environment value (as distinct from the variable name we just looked
up). A likely value for this might be /usr/local/oracle. Obviously if we're given no variable name
to set, there's no point looking for a value for it! Conversely we are assuming that having bothered to name
the variable in the configuration file, also put in a valid value for it - this code could break if the variable
name is specified but not it's value.

The second section of these code segments is to do with the establishment of a connection to the database
and is a little different between the two versions. Both systems use a handle for the database connection,

Basics: Getting Started

6

which we call $dbhandle - imaginative name huh? In both cases, the respective database APIs provide
a connect function which takes an argument of how to connect to the database. The Php version takes
a single argument, which is stored in our configuration files as phpdbconnect and includes the whole
username, password and database specification in a single lump. The Perl version asks for three: the
database specification, the username and finally the password. The configuration file knows these as
dbiconnect, dbuser and dbpass respectively.

The final bit copes with putting out some kind of error message, at least showing the point of failure, if we
are unable to establish a connection to the database. The methods are very slightly different, but the effect
is very much the same between the two versions. We then just tell the PHP DB interface how we wish it
to organise the returned data; the perl DBI default is pre-determined and is what we want.

Tip

Note that you might wish to have completed the output of the HTML header section and
started the body by this point so that should the database connection fail, the error message
will be visible.

Fetching Some Records
The next step in the process is to use the database connection we've established to actually make a request
of the database. For now don't worry about what that request is or how we've written it - we'll come back
to that topic in detail later in this chapter. Look at the mechanics of how we're issuing the request and
getting back the results. What we're going to ask the database for is a list of those girls who are marked
as Favourite Solo models. We chose this because both the models in our current samples directory are
marked as this and so even if you only have our sample records loaded, you should find some matches.

Example 2.4. Database Query

// do db select
// 0 1 2 3
$query = "select mname, modelno, mbigimage, mimage from ".
 $wacs->conf_get_attr("tables","models").
 " where mflag = 'S' order by mname";
$cursor = $dbhandle->query($query);

The method is a little different in perl in that it is seperated into two steps; as a result it looks like this...

do db select
0 1 2 3
$query = "select mname, modelno, mbigimage, mimage from ".
 conf_get_attr("tables","models").
 " where mflag = 'S' order by mname";
$cursor = $dbhandle->prepare($query);
$cursor->execute;

Note

The query structure is very similar between Php and perl apart for the two step process of
validating and then seperately executing the query in perl. This is mostly down to different

Basics: Getting Started

7

traditions that exist for database accesses in each language. The net result is similar in
technical terms and identical in output terms

In both cases we're putting together an SQL query that reads:

select mname, modelno, mbigimage, mimage
from models
where mflag = 'S'
order by mname

This query asks the database to fetch the four named items: mname, modelno, mbigimage, and
mimage from the database table called models where the field mflag has a value of the capital letter S
and to sort the results it returns to us by the value in the field called mname. It may not surprise you to learn
that mname is the model's name, modelno is our reference number for her, mbigimage is the (location
of the) large size headshot of her and mimage is the (location of the) smaller size headshot of her.

You may have noticed that the only part of this that wasn't copied verbatim from the code is the from
models bit and that there we've used the WACS API call conf_get_attr to get the actual name of
the database table concerned from the main WACS configuration file. This is actually important and
it's strongly recommended that you do use this form when creating SQL queries. If you really insist on
knowing why, take a look at the section on the tables part of the wacs.cfg configuration file in the WACS
configuration guide.

Once we've created the SQL query, we feed it to the database routines. The first step is to pass in the
SQL query and have the database perform that search on the database. Once the query has been executed,
we want to pull back the matching records (or rows in database parlence) for each model. In both Php
and Perl we're calling a routine that returns to us a single row from the database (a single model's record
in this case) each time it's called. When we run out of records, a null return is given and our while loop
ends. In Php, the function to do this is called using fetchRow which returns the next row as an array of
values, which we assign into the variable $results each time. In Perl, the function we're using is called
fetchrow_array because perl offers us a choice in the type of data we are returned and in this case
we want a numerically indexed array.

Note

There are other approaches to getting back the data, including having it returned in one
big lump (such as with the Php call getAll()) - this has been avoided as some WACS
installations might have tens of thousands of matching records for some queries.

Showing The Results

The final step is to actually generate some output from the data we've fetched from the database. We're
going to do this as an unordered list in HTML, so we're going to be adding a little formating to the output
as we retrieve each record.

Basics: Getting Started

8

Example 2.5. Outputing The List

print "\n";
while($results = $cursor->fetchRow())
{
 print "";
 print "conf_get_attr("server","cgiurl");
 print "wacsmpthumbs/".$results[1]."\">";
 print $results[0]."\n";
}
print "\n";

and here's the perl version...

print "\n";
while(@results = $cursor->fetchrow_array)
{
 print "";
 print "<a href=\"".conf_get_attr("server","cgiurl");
 print "wacsmpthumbs/".$results[1]."\">";
 print $results[0]."\n";
}
print "\n";

We start off by printing out the HTML instruction to start an unordered list () in a line on it's own.
We then start a while loop which goes through each entry until it's done them all. Both versions use the
database cursor object ($cursor) to fetch the next record (aka row) from the database using the fetchRow
or fetchrow_array method and assigning it into the array $results (or in perl @results). The act
of the assignment fails when there are no more records to fetch and the while loop will terminate. The
construct here is based upon the fact that both languages have seperate operators for assignment (=) and
comparison (== and eq) and so the code is unambiguous (at least to the php and perl interpreters it is!).

Once inside the body of the while loop we print out the start of list entry tag () and start in on making
use of the data. In the quest to make this example a little bit more satisfying, we've tried to make sure this
application does something vaguely useful. A simple list of names is all well and good, but we wanted it to
actually do something! So what we've done here is to create a link around each models name that points to
her model page as displayed by the standard WACS tools. The raw HTML to achieve this would look like:

Sarah

So we're left with a slight problem here in that we don't know in advance (trust me on this) what the WACS
server is called, we don't know what the models are called and we don't know what their numbers are. We
have no idea if we have a model number 123 or not and whether she's called Sarah; but the WACS system
should be able to fill in all the blanks for us.

The first part of the code merely prints out the start of the HTML and then we ask the
WACS configuration system what it's externally visible URL for cgi-bin programs is. We do this using
the conf_get_attr call again, telling it we want an answer in the section server of the URL for cgi scripts
aka cgiurl. On the next line of the example we put the name of the WACS application we want to link
to, in this case wacsmpthumbs. Since the way we tell wacsmpthumbs what we want it to look up is to
add a slash and then the model number to the URL, we add a slash (/) on the end and then the number.

Basics: Getting Started

9

Tip

You may have noticed that we added a comment on the line above the SQL select statement
with 0,1,2,3 with each number above the field name in the query. This was a shorthand to
ourselves to remind us what the index number in the array is for each of those database fields.

Since the order of the fields we asked for was mname, modelno, mbigimage and then mimage, the
results in the array will be the same - element 0 will be the mname, element 1 will be the model number,
and so on. In both cases we're dealing with a single-dimensional array. The first field we want to go into
the URL for wacsmodelthumbs is the model number, so that will be element 1 (not zero) therefore we
write $results[1]. We then finish off the URL reference by closing the quotes (") and the > tag.

We then want to print the model's name which will be element 0 in our arrays, put out the closing anchor
tag () and then finish off the unordered line entry with the end line tag (). We then print out a
new line so the generated page is easier to read. The moving on to the next record will be done as a by-
product of the test for the next iteration around the while loop. Once we exit the loop, we finish off the
HTML unordered list.

Finishing Off

To just finally finish it off, we need to add a few more pieces just to make it work. For the Php version,
we need to declare it as being a php program with <?php at the very start of the file, with a matching ?>
at the very end. For perl, we need to declare it as a perl script with the very first line being just #!/usr/
bin/perl. Additionally for perl, we need to output the mime content type declaration so that the web
browser knows what kind of object it's being passed - this is done simply with:

print "Content-Type: text/html\n";
print "\n";

Next we need a couple of lines of HTML preamble near the beginning (as mentioned before, just before
the database connection code so we could see any error message that appears):

<html>
<head>
<title>MySimple: Index Of Favourites</title>
</head>
<body>

Similarly at the end, we just need to finish the page off with the html tail piece:

</body>
</html>

Putting It All Together
With all the components in place, let's review the new MySimple WACS program in it's entirety. We
include the modules, initialise the configuration system, check the authorisation, connect to the database,
draft the query, submit it and then loop through the results. Not really that complex now we know what
each part does. Anyway here's the finished code....

Basics: Getting Started

10

Example 2.6. Php: Complete Simple Program

<?php
// MySimple - sample WACS API program (PHP5)
require_once "wacs.php";
require_once "DB.php";
$wacs = new Wacs;
// read the Wacs configuration files
$wacs->read_conf();
// check the auth(entication and authorisation) of this user
$wacs->check_auth($_SERVER['REMOTE_ADDR'], 1);
// start the HTML document
print "<html>\n";
print "<head>\n";
print "<title>MySimple: Index Of Favourites</title>\n";
print "</head>\n";
print "<body>\n";
// database initialisation
// - establish environment variable
$dbienv = $wacs->conf_get_attr("database","dbienvvar");
if(! empty($dbienv))
{
 putenv($dbienv."=".$wacs->conf_get_attr("database","dbienvvalue"));
}
// - connect to the database
$dbhandle= DB::connect($wacs->conf_get_attr("database","phpdbconnect"));
if(DB::iserror($dbhandle))
{
 die("Can't connect to database\nReason:".$dbhandle->getMessage()."\n");
}
$dbhandle->setFetchMode(DB_FETCHMODE_ORDERED);
// do db select
// 0 1 2 3
$query = "select mname, modelno, mbigimage, mimage from ".
 $wacs->conf_get_attr("tables","models").
 " where mflag = 'S' order by mname";
$cursor = $dbhandle->query($query);
// output the results
print "\n";
while($results = $cursor->fetchRow())
{
 print "";
 print "conf_get_attr("server","cgiurl");
 print "wacsmpthumbs/".$results[1]."\">";
 print $results[0]."\n";
}
print "\n";
// finish off
print "</body>\n";
print "</html>\n";
?>

Basics: Getting Started

11

Example 2.7. Perl: Complete Simple Program

#!/usr/bin/perl
#
MySimple - Sample WACS Program (Perl)
#
use Wacs;
use DBI;
read the Wacs configuration files
read_conf;
check the auth(entication and authorisation) of this user
check_auth($ENV{"REMOTE_ADDR"}, 1);
output the HTML headers
print "Content-Type: text/html\n";
print "\n";
print "<html>\n";
print "<head>\n";
print "<title>MySimple: Index Of Favourites</title>\n";
print "</head>\n";
print "<body>\n";
database initialisation
- establish environment variable
$dbienv = conf_get_attr("database","dbienvvar");
if($dbienv ne "")
{
 $ENV{$dbienv}= conf_get_attr("database","dbienvvalue");
}
- connect to the database
$dbhandle=DBI->connect(conf_get_attr("database","dbiconnect"),
 conf_get_attr("database","dbuser"),
 conf_get_attr("database","dbpass")) ||
die("Can't connect to database\nReason given was $DBI::errstr\n");
do db select
0 1 2 3
$query = "select mname, modelno, mbigimage, mimage from ".
 conf_get_attr("tables","models").
 " where mflag = 'S' order by mname";
$cursor = $dbhandle->prepare($query);
$cursor->execute;
print "\n";
while(@results = $cursor->fetchrow_array)
{
 print "";
 print "<a href=\"".conf_get_attr("server","cgiurl");
 print "wacsmpthumbs/".$results[1]."\">";
 print $results[0]."\n";
}
print "\n";
finish off
print "</body>\n";
print "</html>\n";

Basics: Getting Started

12

Running MySimple
Our first WACS application is now complete, so copy the file into the either the web server document
tree (for Php) or the web server cgi-bin directory (for perl). When you call up the URL, you should see
something like this....

Granted it's fairly plain, but the names are in alphabetical order and there are links on each name to
that girl's model page. If you didn't see any output, or got an error, you need to check the error log
for the server you're using. With Apache on linux, the usual location of this is /var/log/httpd/
www.mywacserver.com-errorlog or something similar to that.

Reviewing The First Program
This has been a fairly long and intense chapter, but we obviously had a lot of ground to cover and we
really wanted to achieve a usable program before the end of it. This hopefully we've done. We've seen
how to include the WACS module and the Database interface module. We've seen how to use read_conf
and check_auth to read the configuration files and check the user's credentials. We've then made multiple
uses of conf_get_attr to get all of the information together we need to make a connection to the database.

After all that setup procedure, which will become a very familiar template as you program with the WACS
API, we looked at creating and sending a query to the database, retrieving the results and formating those
results as a simple web page. In the next chapter, we'll look at how to make use of other information stored
within the database.

13

Chapter 3. Using More Database Fields

Adding Model Icons
In the simple example in the last chapter, we saw how to create a list of model's names with hypertext links
on each name to that model's standard WACS model page. Obviously that's not a particularly presentable
page by itself, so the next step is to add a head shot for each model to the links.

We actually already paved the way for doing this by including the two headshot image fields in the results
we asked for from the SQL query - if you remember, we put:

select mname, modelno, mbigimage, mimage

Since we have the data already, all we need to do now is to add a few extra statements to the output
section to output an appropriate image tag and we'll have included the model's headshot too. We have a
configuration attribute in the server section of the configuration file called wacsurl that tells us where the
WACS area can be found on the WACS server. Standard size model headshots are conventionally found
in the icons/ directory directly below the top level. So all we need to do is add in a call to conf_get_attr
to get it and build the apropriate HTML img tag. In PHP we'd write:

 print "conf_get_attr("server","wacsurl");
 print "icons/".$results[3]."\" alt=\"[".$results[0]."]\">";

and in perl we'd write:

 print "<img src=\"".conf_get_attr("server","wacsurl");
 print "icons/".$results[3]."\" alt=\"[".$results[0]."]\">";

this needs to be done just below the line that establishes the link to the model's WACS model page, but
before her name (you could put it after if you prefer) and closing .

Example 3.1. Modified Output Loop with Icon Code

while($results = $cursor->fetchRow())
{
 print "";
 print "conf_get_attr("server","cgiurl");
 print "wacsmpthumbs/".$results[1]."\">";
 print "conf_get_attr("server","wacsurl");
 print "icons/".$results[3]."\" alt=\"[".$results[0]."]\">";
 print $results[0]."\n";
}

and in perl this now looks like:

while(@results = $cursor->fetchrow_array)
{

Using More Database Fields

14

 print "";
 print "<a href=\"".conf_get_attr("server","cgiurl");
 print "wacsmpthumbs/".$results[1]."\">";
 print "<img src=\"".conf_get_attr("server","wacsurl");
 print "icons/".$results[3]."\" alt=\"[".$results[0]."]\">";
 print $results[0]."\n";
}

We then copy up the modified version of the program and run it and we should see something like this:

More Model Information
The WACS database does of course carry far more information about the model thank just her name and
icons, so for the next step we're going to look at adding a few basic pieces of information about her to each
entry. The first step is to add some additional fields to the list of what we want returned by the SQL query.
Initially we're going to add another five fields: they are mhair, mlength, mtitsize, mnsets
and mnvideos. These database fields give us her hair colour, length, the size of her breasts and the number
of images sets and videos we have by her respectively. The modified version of the query looks like:

Example 3.2. Modified SQL command for more Model Info

// do db select
// 0 1 2 3 4
$query = "select mname, modelno, mbigimage, mimage, mhair, ".
// 5 6 7 8
 " mlength, mtitsize, mnsets, mnvideos from ".
 $wacs->conf_get_attr("tables","models").
 " where mflag = 'S' order by mname");
$cursor = $dbhandle->query($query);

Using More Database Fields

15

in php.

Note

We've added a second line of comments with the element numbers within the array that the
returned database field will appear in; mlength will be index 5 for instance.

The same code in perl will look like:

do db select
0 1 2 3 4
$query = "select mname, modelno, mbigimage, mimage, mhair, ".
5 6 7 8
 " mlength, mtitsize, mnsets, mnvideos from ".
 conf_get_attr("tables","models").
 " where mflag = 'S' order by mname";
$cursor = $dbhandle->prepare($query);
$cursor->execute;

Using HTML tables
The next step is to modify the display loop to include the extra details and in this case it probably makes
sense to switch to using an HTML table cell to contain and manage the entry. We'll start off by simply
re-writing the existing display loop to build the results into an HTML table instead - once we have that
working, we'll restyle the table to include the extra fields we just added to the query. There is no actual
requirement to make use of all the fields we've requested.

Lets have a look at the structure of the HTML document we're outputing here: First we need to open the
new table, then each model will have her own row as we go through with the headshot image on the left
and her name on the right, and finally we'll finish off the table. The HTML (minus the links) to do this
will look something like:

<table>
 <tr>
 <td></td>
 <th>Roxanne</th>
 </tr>
 <tr>
 <td></td>
 <th>Sabrina</th>
 </tr>
</table>

Of course the next step is to re-write the code to actually recreate the necessary HTML; the start and end of
the table simply replace the unordered list (and) tags outside the loop that iterates through
the list of models returned by the database. The list element (and) tags get replaced by the
row start and end tags (<tr> and </tr>. Since we're puting the headshot icon and the name in separate
elements and want a link to the appropriate model page on both of them, we need to double up the code
that creates the hypertext link to wacsmpthumbs. We then include the icon (with alignment attributes) in a
standard table tag (<td> and the name in a heading (<th>) table tag so it comes out in bold and is centred.

The mysimple example thus re-writen will look like:

Using More Database Fields

16

Example 3.3. New version of the loop using tables

// output the results
print "<table>\n";
while($results = $cursor->fetchRow())
{
 // start the HTML table row
 print "<tr><td valign=top align=center>\n";
 // link around the headshot image
 print "conf_get_attr("server","cgiurl");
 print "wacsmpthumbs/".$results[1]."\">";
 // head shot image
 print "conf_get_attr("server","wacsurl");
 print "icons/".$results[3]."\"[".$results[0]."]\">\n";
 // end this cell and start the next
 print "</td><th>\n";
 // link around name
 print "conf_get_attr("server","cgiurl");
 print "wacsmpthumbs/".$results[1]."\">";
 // the name
 print $results[0]."\n";
 // end the HTML table row
 print "</th></tr>\n";
}
print "</table>\n";
// finish off

and re-writing the same function in perl gives us something like:

output the results
print "<table>\n";
while(@results = $cursor->fetchrow_array)
{
 # start the HTML table row
 print "<tr><td valign=top align=center>\n";
 # link around the headshot image
 print "<a href=\"".conf_get_attr("server","cgiurl");
 print "wacsmpthumbs/".$results[1]."\">";
 # head shot image
 print "<img src=\"".conf_get_attr("server","wacsurl");
 print "icons/".$results[3]."\"[".$results[0]."]\">\n";
 # end this cell and start the next
 print "</td><th>\n";
 # link around name
 print "<a href=\"".conf_get_attr("server","cgiurl");
 print "wacsmpthumbs/".$results[1]."\">";
 # the name
 print $results[0]."\n";
 # end the HTML table row
 print "</th></tr>\n";
}
print "</table>\n";

Using More Database Fields

17

finish off

When run, this modified version of the script should produce the following:

As you can see, this has improved the layout somewhat over the previous version using just unordered list
elements. Now to add those extra fields....

Adding The Model Details

To display some more details about the model, we're going to span the headshot on the left hand side
over several rows, and add the model details themselves as additional table rows on the right hand side.
Our first change therefore is to add rowspan=4 to the options on the image container <td> tag. The
resulting php code is:

 // start the HTML table row
 print "<tr><td rowspan=4 valign=top align=center>\n";
 // link around the headshot image

and in perl reads:

 # start the HTML table row
 print "<tr><td rowspan=4 valign=top align=center>\n";
 # link around the headshot image

Next we add the second row which will include her hair colour and length, then a third row which will
describe her breast size and the fourth row that gives the number of image sets and the number of videos
we have for her.

Using More Database Fields

18

Example 3.4. Adding Model Information

 // end the HTML table row
 print "</th></tr>\n";
 // do the second row (her hair)
 print "<tr><td>hair: ";
 print $results[5]." ".$results[4];
 print "</td></tr>\n";
 // do the third row (her breasts)
 print "<tr><td>breasts: ";
 print $results[6]."\n";
 print "</td></tr>\n";
 // do the fourth row (her sets)
 print "<tr><td>sets: ";
 print $results[7];
 if($results[8] > 0)
 {
 print " videos: ".$results[8];
 }
 print "</td></tr>\n";

and the same implemented in perl would look like:

 # end the HTML table row
 print "</th></tr>\n";
 # do the second row (her hair)
 print "<tr><td>hair: ";
 print $results[5]." ".$results[4];
 print "</td></tr>\n";
 # do the third row (her breasts)
 print "<tr><td>breasts: ";
 print $results[6]."\n";
 print "</td></tr>\n";
 # do the fourth row (her sets)
 print "<tr><td>sets: ";
 print $results[7];
 if($results[8] > 0)
 {
 print " videos: ".$results[8];
 }
 print "</td></tr>\n";
}

With these changes made, if you now run this version of the program, which is called mysimple4 in the
samples/programming directory, you should see something like this:

Using More Database Fields

19

There's obviously a lot more room for using many more of the fields within the model schema for further
improvement of our model index, and we'll return to this subject in a later chapter (Chapter 5, The User
Interface Toolkit). Before we leave the topic of models and move on to sets, we will cover just one more
topic, that of adding rating icons.

Adding Other Icons
One of the significant features of WACS is its ability to include various attribute icons within pages to
make specific aspects and attributes easier to recognise. While many of them need some additional logic to
handle their display, a few of them like the model's rating and country of origin are actually fairly simple
to use. We're going to take a quick look at how we'd use the WACS API to include the rating icons before
moving on to look at how we handle sets. We will return to the more complex cases later when we look
at the User Interface toolkit API.

For the model's rating, we need the field called mrating so the first step is to add this to the list of
fields that we select from the database:

// do db select
// 0 1 2 3 4
$query = "select mname, modelno, mbigimage, mimage, mhair, ".
// 5 6 7 8 9
 " mlength, mtitsize, mnsets, mnvideos, mrating ".
 "from ".$wacs->conf_get_attr("tables","models").
 " where mflag = 'S' order by mname";
$cursor = $dbhandle->query($query);

and in perl the change makes this section read:

do db select
0 1 2 3 4

Using More Database Fields

20

$query = "select mname, modelno, mbigimage, mimage, mhair, ".
5 6 7 8 9
 " mlength, mtitsize, mnsets, mnvideos, mrating ".
 "from ".conf_get_attr("tables","models").
 " where mflag = 'S' order by mname";
$cursor = $dbhandle->prepare($query);
$cursor->execute;

With the rating field now in the data returned to us by the database, we can move down and update the
display section to make use of it. The first step needed is to change the rowspan setting from 4 to 5 to
accomodate the extra line of output.

 // start the HTML table row
 print "<tr><td rowspan=5 valign=top align=center>\n";
 // link around the headshot image

and in perl...

 # start the HTML table row
 print "<tr><td rowspan=5 valign=top align=center>\n";
 # link around the headshot image

The final step is to add the processing of the mrating field. All WACS icons are typically stored in the
glyphs/ directory which is within the web server document tree. To find its exact URL, you use the
conf_get_attr function to retrieve the value iconurl in the section server. Within this directory,
you will find five files called rating-1.png through rating-5.png which look like this:

To make use of this we need to first test our data to see if we have a valid ratings value at all, then merely
concatinate a string to create the necessary icon reference. In php, this will look like this:

Example 3.5. Adding A Rating Icon

 print "</td></tr>\n";
 // add the rating icon (if we have a value)
 print "<tr><td align=center valign=top>";
 if($results[9] > 0)
 {
 print "<img src=\"";
 print $wacs->conf_get_attr("server","iconurl");
 print "rating-".$results[9].".png\">";
 print " alt=\"[".$results[9]." out of 5]\">";
 }
 else
 {
 print "no rating";
 }
 print "</td></tr>\n";

while the same example in perl, would look like this:

Using More Database Fields

21

 print "</td></tr>\n";
 # add the rating icon (if we have a value)
 print "<tr><td align=center valign=top>";
 if($results[9] > 0)
 {
 print "<img src=\"".conf_get_attr("server","iconurl");
 print "rating-".$results[9].".png\"";
 print " alt=\"[".$results[9]." out of 5]\">";
 }
 else
 {
 print "no rating";
 }
 print "</td></tr>\n";
}

Once you've put in these three changes, you can run the resulting script and expect to get an output
something like this:

At this point we're hopefully beginning to get a rather more satisfying display of model details. Obviously
there are many other tweaks we might like to add, and we'll return to some of those later on when we look
at the User Interface Toolkit and the routines that provides. There is however one more thing we really
should cover now - what happens when something goes wrong.

Improving Error Reporting
One of the most important things in good website engineering is ensuring that when things fail, it's handled
gracefully with some kind of reasonable error message returned to the user, and that the event is logged
properly in the system error logs. There are basically four ways in which a WACS application is likely
to fail - authentication, failure to parse the configuration files, and failure to connect to the database, and
failure to find the content.

Using More Database Fields

22

The authentication failure is pretty conclusively covered by the core WACS check_auth function and
it's partners. The parser is rather more tricky to cope with, and the XML parse routines tend to just abort -
it's also very all or nothing; the file parses or it doesn't. Additionally once a configuration file is in place,
it's unlikely to become corrupted; if it's merely disappeared the defaults will be used and the system will
most likely have problems at the next stage of connecting to the database. The third is connecting to the
database, which we'll deal with in a moment. The fourth, failure to find content, doesn't result in completely
blank screens and should get reported to you quite quickly. Additionally there are so many places it could
be (raid parition, lvm volume, remote fileserver) that we can't really do much in a general way.

Where we can get some traction is with decent reporting of database connection problems, and this where
the dberror function comes into play. Previously, if we failed to connect to the database we did the
following in php:

if(DB::iserror($dbhandle))
{
 die("Can't connect to database\nReason:".
 $dbhandle->getMessage()."\n");
}

and the similar steps in perl were:

$dbhandle=DBI->connect(conf_get_attr("database","dbiconnect"),
 conf_get_attr("database","dbuser"),
 conf_get_attr("database","dbpass")) ||
die("Can't connect to database\nReason given was $DBI::errstr\n");

To improve this, we're going to change this (called mysimple6 in the example code) to use the dberror
function instead. This is a routine that uses named parameters, a technique we'll see a lot more of later as we
use the WacsUI programming library. Basically we pass it up to five arguments or parameters, but we tell
it what each one is, thus the order doesn't matter and if any of them are missing, it doesn't affect the values
of the others. The dberror routine expects parameters called: header, message, error, dbuser and dbhost.

The header is to tell the routine how early in the proceedings we are and whether we still need to start
the HTML of the web page. Setting header to y says we do want a header added, setting it to n says we
don't. The next one, message is the message that the end user will see. The next three are the error message
returned by the database routines, the username it was trying to use, and the database connect string it was
trying to use. Here is the code for doing this in PHP5:

Example 3.6. Calling dberror for better error reporting

if(DB::iserror($dbhandle))
{
 $wacs->dberror(array(
 "header"=>"y",
 "message"=>"MySimple6: Can't connect to database",
 "error"=>$dbhandle->getMessage(),
 "dbuser"=>$wacs->conf_get_attr("database","dbuser"),
 "dbhost"=>$wacs->conf_get_attr("database","phpdbconnect")
));
}

while the same basic code in perl looks a little simpler because the parameter names don't need to be
packaged up into an array before they're passed:

Using More Database Fields

23

$dbhandle=DBI->connect(conf_get_attr("database","dbiconnect"),
 conf_get_attr("database","dbuser"),
 conf_get_attr("database","dbpass")) ||
 dberror(header=>'n',
 message=>"Can't connect to database",
 error=>$DBI::errstr,
 dbuser=>conf_get_attr("database","dbuser"),
 dbhost=>conf_get_attr("database","dbiconnect"));

With the error reporting improved, we'll move on to other things. We'll continue to use the short form
version of the error message for brevity in the later examples, but you'll know that you probably want to
actually use dberror in most cases. Next up, we'll take a look at displaying set details rather than those
of models....

24

Chapter 4. Set Display Routines

About Set Display

So far we've looked at displaying the information in the models table in the database, but of course there
is also the small matter of sets without which whole thing wouldn't have much point. In this chapter we're
going to look at displaying details of the sets, and then towards the end of the chapter, how to tie models
and sets together.

In most of these examples, we're going to use the standard WACS tools to actually display the details of
the sets themselves, but you can of course write your own web apps to do this should you wish to. In most
cases we'll throttle the examples to only show a first few sets from the databases and assume you'll develop
your own strategies for paginating and sub-dividing the sets in real world applications.

Sets: The Basic Bones

Since we're starting a new application, we'll start from scratch with the basic bones which we'll call setdisp.
Much of the basic structure of this program should be getting quite familiar by now. The same five basic
steps are to be found here - bring in the modules, initialise them, set up the database connection, submit
the query and loop through the results outputting them.

What we're setting out to do in this script is to display a list of the latest additions of image sets marked
as being of category flag type T which means they're solo sets involving toy usage. This we achieve by
requesting only sets of type I which means image sets and of category flag type T.

Tip

The full lists of recommended values for the type and category flag can be found in the
schema reference section at the back of this book in Chapter 10, Schema Reference: Sets.

The basic format is that we once again create an HTML table with a row for each record. There's a link
on the name of the set that leads to the standard WACS page display program wacsindex. This takes a
number of URL arguments but the one we're using here is to prefix the set number with page which puts
it into paged display mode and appended with a .html so that it saves correctly and in some cases will
get cached. We're shrinking the font in which it's displayed as it can be quite a long line of text in it's stored
form (but more on that topic later).

Note

The SQL query itself looks after the ordering of the output; the order by sadded
desc retrieves the entries in the reverse order in which they were added - the database
field sadded being the date the set was added to the database, and the desc (meaning
descending) puts the biggest value first. In this case that is the most recent date...

Set Display Routines

25

Example 4.1. The Basic SetDisp Program

<?php
// setdisp - set display program
require_once "wacs.php";
require_once "DB.php";
$wacs = new Wacs;
$wacs->read_conf();
$wacs->check_auth($_SERVER['REMOTE_ADDR'],1);
// start the document
print "<html>\n";
print "<head>\n";
print "<title>SetDisp - List of Sets</title>\n";
print "</head>\n";
print "<body>\n";
// connect to the database
$dbienv = $wacs->conf_get_attr("database","dbienvvar");
if(! empty($dbienv))
{
 putenv($dbienv."=".$wacs->conf_get_attr("database","dbienvvalue"));
}
$dbhandle = DB::connect($wacs->conf_get_attr("database","phpdbconnect"));
if(DB::iserror($dbhandle))
{
 die("Can't connect to database\nReason:".$dbhandle->getMessage()."\n");
}
$dbhandle->setFetchMode(DB_FETCHMODE_ORDERED);
// 0 1 2 3 4 5
$query = "select setno, stitle, stype, scatflag, simages, scodec ".
 "from ".$wacs->conf_get_attr("tables","sets")." ".
 "where stype = 'I' and scatflag = 'T' ".
 "order by sadded desc ";
$cursor = $dbhandle->query($query);
print "<table>\n";
$setcount=0;
while((($results = $cursor->fetchRow()) &&
 ($setcount < 25)))
{
 // start the row
 print "<tr><td align=center>\n";
 // create the link
 print "conf_get_attr("server","cgiurl");
 print "wacsindex/page".$results[0].".html\">";
 // print out the set name
 print "";
 print $results[1]."\n";
 // end the row
 print "</td></tr>\n";
 $setcount++;
}
print "</table>\n";
print "</body>\n";
print "</html>\n";
?>

Set Display Routines

26

and implementing the same code in perl gives us:

#!/usr/bin/perl
setdisp - set display program
use Wacs;
use DBI;
read_conf();
check_auth($ENV{'REMOTE_ADDR'},1);
output the HTML headers
print "Content-Type: text/html\n";
print "\n";
print "<html>\n";
print "<head>\n";
print "<title>SetDisp - List of Sets</title>\n";
print "</head>\n";
print "<body>\n";
connect to the database
$dbienv = conf_get_attr("database","dbienvvar");
if($dbienv ne "")
{
 $ENV{$dbienv}= conf_get_attr("database","dbienvvalue");
}
$dbhandle=DBI->connect(conf_get_attr("database","dbiconnect"),
 conf_get_attr("database","dbuser"),
 conf_get_attr("database","dbpass")) ||
die("Can't connect to database\nReason given was $DBI::errstr\n");
0 1 2 3 4 5
$query = "select setno, stitle, stype, scatflag, simages, scodec ".
 "from ".conf_get_attr("tables","sets")." ".
 "where stype = 'I' and scatflag = 'T' ".
 "order by sadded desc ";
$cursor = $dbhandle->prepare($query);
$cursor->execute;
print "<table>\n";
$setcount=0;
while((($results = $cursor->fetchrow_array) &&
 ($setcount < 25)))
{
 # start the row
 print "<tr><td align=center>\n";
 # create the link
 print "<a href=\"".conf_get_attr("server","cgiurl");
 print "wacsindex/page".$results[0].".html\">";
 # print out the set name
 print "";
 print $results[1]."\n";
 # end the row
 print "</td></tr>\n";
 $setcount++;
}
print "</table>\n";
print "</body>\n";
print "</html>\n";

Set Display Routines

27

When we run this set against our demonstration web server, we get the following output which is a list of
the sets containing dildo use in most-recent first order.

Adding Icons
While it works and is usable, it's not exactly the greatest web page ever, so let's try and brighten it up a
little. It'd be quite nice to be able to include an icon, and of course wacs has the infrastructure to do this
for us. In fact, it offers us three different options of what size of icons we'd like: set, std and mini.
In this case since we're trying to get a fair number of entries shown, we'll opt for the mini version. We
get this by calling the wacsimg command and specifying that we'd like the mini version.

To make this happen we need to add another cell to the table with the HTML img tag pointing at wacsimg.
As before we'll specify both align and valign properties for this table cell. So if we modify the code,
much as we did before for the model icons, we get the following in php:

Example 4.2. Adding A Set Icon

 // start the row
 print "<tr><td valign=top align=center>\n";
 // create the link for the icon
 print "conf_get_attr("server","cgiurl");
 print "wacsindex/page".$results[0].".html\">";
 // add the icon itself
 print "conf_get_attr("server","cgiurl");
 print "wacsimg/mini".$results[0].".jpg\" alt=\"[icon for ";
 print $results[0]."]\">";
 // end cell, next cell
 print "</td><td align=center>\n";
 // create the link

and of course the same example in perl looks like:

 # start the row
 print "<tr><td valign=top align=center>\n";
 # create the link for the icon
 print "<a href=\"".conf_get_attr("server","cgiurl");
 print "wacsindex/page".$results[0].".html\">";
 # add the icon itself
 print "<img src=\"".conf_get_attr("server","cgiurl");

Set Display Routines

28

 print "wacsimg/mini".$results[0].".jpg\" alt=\"[icon for ";
 print $results[0]."]\">";
 # end cell, next cell
 print "</td><td align=center>\n";
 # create the link

and if we run the resulting program, we get something like this:

Making The Text More Readable
One of the design decisions taken when designing WACS was to encourage directory names to be the same
as the set names, and to make those more usable outside of the WACS system, to make them not include
spaces. Instead the so-called Camel Technique, so named because of all the humps in it, where an upper
case letter signifies the start of each new word. This is used along with a technique where underscores (_)
act as the transitions between the three sections of the set name: these are:

1. Model or Models name(s)

2. Her Clothing

3. Location and Action

However the underscore aspect is only used in the directory name and not in the set title (field stitle)
as stored in the database which has spaces instead. Amongst our tasks, we will need to replace the spaces
with the appropriate HTML table tags.

Fortunately we can use a regular expression to convert the Camel-Style text back into something a little
bit more readable. This next group of changes to the code are to do exactly that. We're going to take a
slightly different approach from before as we're not going to make the split off parts into seperate HTML
table cells. This is because that makes both the font setting and HTML link creation much more complex
- we're merely going to insert a forced line break
 tag into the places where we want a new line to
start. Then we're going to break up the Camel-Style text into seperate words. We do this with:

Our first substitution is going to be to replace the spaces (the section dividers in the stitle field) with
the appropriate HTML directives. The second and third ones actually break up the words at the points
the case changes:

Set Display Routines

29

Example 4.3. Making Camel-Style Text Readable

 // print out the set name
 print "";
 $prettytext = $results[1];
 $prettytext = preg_replace('/\s/','
', $prettytext);
 $prettytext = preg_replace('/(\w)([A-Z][a-z])/','$1 $2', $prettytext);
 $prettytext = preg_replace('/([a-z])([A-Z])','$1 $2', $prettytext);
 print $prettytext."\n";
 // end the row

To implement the same functionality in perl actually uses exactly the same regular expressions (aka regexp)
but looks very different as it's all done in assignment operations without any explicit function call. There's
no preg_replace used here. Anyway here is exactly the same functionality in perl:

 # print out the set name
 print "";
 $prettytext = $results[1];
 $prettytext =~ s/\s/
/g;
 $prettytext =~ s,(\w)([A-Z][a-z]),$1 $2,g;
 $prettytext =~ s,([a-z])([A-Z]),$1 $2,g;
 print $prettytext."\n";
 # end the row

With these changes in place, we can once again copy over the code and we have a much more presentable
output from the program; here's an example:

Hopefully with this we've got the output presentation of the sets list looking a whole lot better than it was
in the first example. There are of course many more fields within the set database that we could also make
use of in our pages. We will return to them when we look at the WACS User Interface Toolkit in Chapter 5,
The User Interface Toolkit. For now, before we finish our look at sets, we're just going to look at how we
find the model or models featured in a given set.

Set Display Routines

30

Connecting Sets And Models

Understanding The Data Architecture
One of the things that often confuses people about true relational databases is that they are unable to do
a one-to-many or many-to-many relationship directly. While many so called easy-to-use databases do
offer field types that purport to offer such linking, they are problematic and do not fit into any sensible
logical model for how things should be structured. Worse, each vendor's implementation (those who do
implement it at all) is different and incompatible. However with a sensible schema design, this limitation
really isn't a problem at all.

One such instance of this need to link one-to-many is the concept of linking a set with a model within
WACS. In the easy case, you'd have thought that you'd simply put the model number into one of the fields
in the set schema and the job would be done. But what do you then do when you have two models featuring
in a set; easy you might say - one is the main model, the other is a secondary model, so just add a second
field for the additional model and put the second number there. Of course that then makes the SQL query
more complex each time as you've got to check both fields before you know if a model is in a set or not.
It still might work, but it's already getting cumbersome. You might discover a set first by virtue of the
additional model and only afterwards identify the official primary model.

Just about every adult site we've encountered does feature at least a few sets with three models, so suddenly
we're looking at a second additional model field and having to check that as well. And believe me, there are
a few sites of which Sapphic Erotica comes to mind in particular where sets with three, four, five or even
six models in a single set are relatively common. Simply put, adding models to the sets table just doesn't
scale. So we take the proper relational database approach and add an additional schema called assoc for
associations which gives us these relationships. It's a very simple schema, basically containing a primary
key, a model number and a set number.

Using Relationships With Assoc
The process of finding out who is in a set becomes very simple and straight forward - you simply search
the assoc table for the set number you're looking at. If we're looking for who is in set no 123, we simply
use the following SQL query:

select amodelno from assoc
where asetno = 123

We then merely loop through the results of the above query and each record we find is another model
involved in this set. If we don't get any results returned, then there aren't any models associated with this
particular set. Of course we probably want more than just the model number(s), but that too is relatively
simple. Consider the following query:

select modelno, mname, mimage, mbigimage
from models, assoc
where modelno = amodelno
 and asetno = 123

This query simply retrieves the model details for each model who is involved with this particular set, one
record at a time. Due to the way relational databases are engineered, this is actually a very quick and

Set Display Routines

31

efficent process. The first line of the where clause does what is known as a relational join and establishes
the necessary connection between the assoc and models tables necessary for what we're trying to do.
Additionally it's a very logical and elegant solution that will cope with none, one, two, three, four or as
many models as you like within a single simple action.

Note

Although we make use of the assoc table, we don't actually use any results from it - we don't
need to - it has silently taken care of handling the connection we needed to make.

An Example Using Assoc

If we go back to our example program displaying sets, we can modify it to include this activity as a sub-
routine. What we're going to do is to divide the right hand side of the output into the two cells, one with
the title, and the other with the model(s) featuring in the set. The icon will remain on the left. First step is
to add the rowspan attribute to the left hand side cell so the icon spans it.

Example 4.4. Modified Icon Cell

 // start the row
 print "<tr><td rowspan=2 valign=top align=center>\n";
 // create the link for the icon

and in perl, it'll look very similar:

 # start the row
 print "<tr><td rowspan=2 valign=top align=center>\n";
 # create the link for the icon

The next step is to create a new function to handle the query to look up the entries in the assoc table. We're
going to call this function simply getmodel and it'll take just one argument, the set number for which
we want the model(s) details. It will return to us a potentially quite long string variable containing all the
model names that matched surrounded by a link to each model's WACS model page.

Note

So long as we use a different cursor variable to the database routines we can quite happily run
another query and loop through it's results while inside an outer loop looking at the results
of a completely different query. This is where the whole concept of a cursor becomes really
useful.

Set Display Routines

32

Example 4.5. getmodel Subroutine

function getmodel ($setno) {
 global $dbhandle;
 global $wacs;
 $gmresult='';
 // 0 1 2 3
 $modelquery="select modelno, mname, mimage, mbigimage ".
 "from ".$wacs->conf_get_attr("tables","models").
 ", ".$wacs->conf_get_attr("tables","assoc")." ".
 "where modelno = amodelno ".
 " and asetno = ".$setno." ".
 "order by mname ";
 $modelcursor=$dbhandle->query($modelquery);
 // loop through the results
 while($modelresults = $modelcursor->fetchRow())
 {
 // do we need a divider?
 if(! empty($gmresult))
 {
 $gmresult.="
";
 }
 // add the model link
 $gmresult.="conf_get_attr(
 "server","cgiurl")."wacsmpthumbs/".
 $modelresults[0]."\">";
 // add her name and close link
 $gmresult.=$modelresults[1]."";
 }
 // return the complete string
 return($gmresult);
}

and the same code implemented in perl looks like this:

sub getmodel($)
{
 my($setno)=@_;
 my($gmresult, $modelquery, $modelcursor, @modelresults);
 $gmresult='';
 #
 $modelquery="select modelno, mname, mimage, mbigimage ".
 "from ".conf_get_attr("tables","models").
 ", ".conf_get_attr("tables","assoc")." ".
 "where modelno = amodelno ".
 " and asetno = ".$setno." ".
 "order by mname ";
 $modelcursor=$dbhandle->prepare($modelquery);
 $modelcursor->execute;
 # loop through the results
 while(@modelresults = $modelcursor->fetchrow_array)
 {

Set Display Routines

33

 # do we need a divider
 if($gmresult ne "")
 {
 $gmresult.="
";
 }
 # add the model link
 $gmresult.="<a href=\"".conf_get_attr("server","cgiurl").
 "wacsmpthumbs/".$modelresults[0]."\">";
 # add her name and close link
 $gmresult.=$modelresults[1]."";
 }
 # return the complete string
 return($gmresult);
}

The final step of this process is to add into our main loop going through the retrieved set records a call
to the getmodel function. This looks like:

Example 4.6. Calling The getmodel Function

 // next right hand cell
 print "<tr><td align=center>\n";
 print getmodel($results[0]);
 print "</td></tr>\n";
 // increment set count

and in perl this looks like

 # next right hand cell
 print "<tr><td align=center>\n";
 print getmodel($results[0]);
 print "</td></tr>\n";
 # increment set count

With these changes incorporated into the code, we now have the finished version of the setdisp program
(setdisp4.php or setdisp4 in the samples directory. If we now copy this script up to the web server and
run it, we should see something like this:

Set Display Routines

34

Once again we've gradually developed a program up to the point where it is now offering quite reasonable
functionality and layout making use of the WACS programmers toolkit API. Hopefully this has given you
an insight into what WACS is capable of and the basics of how to make use of it's API. In due course,
we hope to have a respository of WACS skins, or mini-site scripts, which you can download and tailor to
your own needs. If in the course of learning the WACS API you write some programs you'd be happy to
share with others, please send them to us and we'll include them in the respository.

35

Chapter 5. The User Interface Toolkit
Introducing WacsUI

In this chapter, we're going to take a slightly different tack, we're going to just look at code segments
you could choose to include within your application, primarily user interface components taken from the
User Interface toolkit, WacsUI. This is not going to be an exhaustive review of what is available as that
is covered in detail in the reference section, Chapter 7, WACS API: User Interface Module. Instead this is
just a quick taster of just a few of the calls provided by the WacsUI toolkit.

So far we've been dealing with the various routines that are provided by the Core Wacs module - and these
relate primarily to configuration parameters and security. There is a second module available for you to
use called WacsUI, the WACS User Interface Toolkit. This concerns itself primarily with providing utility
functions to ease the tasks of formatting and preparing data from the database into a form more suitable
for use in web pages.

Including WacsUI support
To include support for the WACS User Interface (WacsUI) toolkit within your application, you need to
add the following extra lines to your code, ideally just after the Wacs core module.

Example 5.1. WacsUI initialisation

require_once "wacsui.php";

$wacsui = new WacsUI;

and here's the perl dialect of the same activity...

use WacsUI;

WacsUI: DescribeHer

Example 5.2. Using WacsUI: describeher

print $wacsui->describeher(
 array('hair'=>$results[4],
 'length'=>>results[5],
 'titsize'=>>results[6],
 'pussy'=>>results[7],
 'race'=>>results[8],
 'build'=>>results[9],
 'height'=>>results[10],
 'weight'=>>results[11],
 'occupation'=>>results[12]))."\n";

The User Interface Toolkit

36

Note

We have to package up our parameter list as an array in order to pass it in Php; perl is
somewhat simpler with a simple sequence of named parameters.

print describeher(
 hair=>$results[4],
 length=>$results[5],
 titsize=>$results[6],
 pussy=>$results[7],
 race=>$results[8],
 build=>$results[9],
 height=>$results[10],
 weight=>$results[11],
 occupation=>$results[12])."\n";

The above example is based upon modifying the MySimple example program from in the second chapter
to add the following extra fields into the query: mhair, mlength, mtitsize, mpussy, mrace,
mbuild, mheight, mweight, moccupation after the mimage (with a comma of course) and
before the from clause.

The addkeyicons function
Both the models and sets schemas feature fields that contain a space seperated list of keywords that
mark certain attributes found within that set. These can be quickly turned into a small HTML table of
icons using the routine addkeyicons. The fields suitable for use with this are scatinfo from the sets
table and mattributes from the models table. These are passed as the first attribute; the second being
the displayed size of the icons which for the default icons would be a maximum of 48 x 48 pixels. The
function is called simply with:

Example 5.3. Using AddKeyIcons

 addkeyicons($results[16], 24);

WacsUI: Other Functions
Another example of using the wacsui module can be found in the newsets.php application in the samples
directory. This is a more "real world" worked example showing a new releases index page; it makes use
of both the iconlink and addkeyicons functions.

Detailed documentation on each call available and how it works can be found in the API reference section
Chapter 7, WACS API: User Interface Module.

Conclusions
We've now come to the end of the basic WACS API tutorial, at least for this edition of the WACS
Programmers Guide. It is our intention to expand this section in future editions. Still, it has hopefully
introduced you to the key concepts in making use of the WACS Programming API and given you some
useful simple programs to build on when creating your own applications. The rest of this book consists
of the WACS API reference manual and the WACS Database Schema Reference. If these do not provide

The User Interface Toolkit

37

sufficient information, please contact us via the methods listed on the WACS web site at SourceForge
[http://wacsip.sourceforge.net].

http://wacsip.sourceforge.net
http://wacsip.sourceforge.net

Part II. WACS API
Programming Reference

This is the API (Application Programming Interface) reference manual for the WACS environment. It documents the
main API calls in both Perl and PHP dialects. There are now six operational modules available as part of the WACS
system, plus a utility module used by the installers.

Table 1. The Key WACS Modules

WACS Module List

name part of description

Wacs.pm Core the main Wacs module

WacsUI.pm Core the Wacs User Interface module

WacsStd.pm Core the Wacs Standardised Components module

WacsID.pm Core the Wacs Identification module

wacs.php wacs-php the main Wacs module, Php dialect

wacsui.php wacs-php the Wacs user interface module, Php dialect

Chapter 6, WACS API: Core Module
Chapter 7, WACS API: User Interface Module
Chapter 8, WACS API: Standard Components Module
Chapter 9, WACS API: Identification Module

39

Chapter 6. WACS API: Core Module
Core Module: Summary

Table 6.1. Function Summary: Core Module

function description

read_conf locate and read the XML based configuration file

check_auth check that this is an authorised access

auth_error report an authentication error and suggest remedies

auth_user return the registered username for this IP

add_auth add a new authentication token to access control system

find_config_location try to locate the specified XML config file

conf_get_attr get the requested configuration attribute

auth_get_attr get the requested access control list attribute

dberror produce a more helpful error page when db connections fail

gettoday get today's date as a string suitable for the current DB

timecomps break a date down into component parts

vendlink provide a link to the vendors site

getvaluename takes a single character flag and converts to string

geticonlist gets the icon array for the specified object type

gettypecolour get the prevailing colour scheme for the set type

divideup make a directory name more readable

alsofeaturing find and list any other models featured in this set

checkexclude check for this file name being one to ignore/hide

checkindex check for what might be an index file

makedbsafe try to make the returned string safe for use in the database

addheadercss add standard preamble to enable javascript menus

setgroupperms set the appropriate group permissions for co-operative updating

Core Module: Reference

Core Module: Reference
The following pages contain the *nix style reference pages for each function call in the WACS core
module. These detail what the function does, what parameters it takes, what it returns and which versions
of the core library it is available in.

WACS API: Core Module

40

Name
read_conf — read Wacs core config modules

Synopsis
use Wacs;

read_conf

Summary

The read_conf causes the standard WACS XML configuration file, wacs.cfg to be parsed and the
contents read into internal memory structures in the WACS module for later use by other WACS routines.
The main interface to accessing this information is the call conf_get_attr.

read_conf is sensitive to the environment variable WACS_CONFIG which specifies a directory
containing an alternative wacs.cfg configuration file.

Availability

read_conf is available in both perl and php.

WACS API: Core Module

41

Name
check_auth — check if this IP address is authorised for access

Synopsis
use Wacs;

check_auth(ip_address, vocal_error);

scalar ip_address;
scalar vocal_error;

Summary

check_auth checks whether the passed IP address is authorised for access to this Wacs server at this
time. This authorisation may be by either permanent or lease permission based upon the calling IP address.
This IP address is specified by the first parameter to the function. The second parameter controls what will
be done about it: if the value is 0 (zero), the call will merely terminate the session by exiting the program;
if the value is 1 (one), an authorisation error HTML page will be displayed offering the user the option to
log in. In the Perl version, an additional option of 2 (two) is available which outputs a failure icon in the
case of an expired lease and a request for an image file - this is not possible in PHP as the content type
of text/html has already been determined.

Availability

check_auth is available in both perl and php.

WACS API: Core Module

42

Name
auth_error — create a reasonable HTML error page with reason and link to remedy

Synopsis
use Wacs;

auth_error(message);

scalar message;

Summary

auth_error creates a reasonable HTML error page with reason and link to remedy if applicable (ie
login page). The message parameter will be placed in a bordered box near the bottom of the message and
can be used to convey additional information. check_auth sets this to Sorry, your lease has
expired. when that is the case.

Availability

auth_error is available in both perl and php.

WACS API: Core Module

43

Name
auth_user — return the account name of the user associated with IP address

Synopsis
use Wacs;

scalar auth_user(ip_address);

scalar ip_address;

Summary

auth_user returns the account name of the user associated with the specified IP address.

Availability

auth_user is available in both perl and php.

WACS API: Core Module

44

Name
add_auth — add a new authentication token to the access control list

Synopsis
use Wacs;

add_auth(...);

Parameters

parameter description

ipaddr The IP Address of the host being authorised.

user account name of the user being registered

type type of registration being undertaken - currently lease

role leval of access granted currently: viewer, power or admin

date date at which this lease should expire

prefexcl preference exclusions: the scatflag values not to be shown by default

usedirect whether to use the usedirect function if supported by the server - can be yes
or no

imagepage whether to create links to framed page or raw ones - should be frame or raw

scaling when to use image scaling - can be none, slide, slide+page and all

size size of scaled images when applicable in the format 1024x768

quality jpeg quality setting used when scaling images

delay desired delay before next image in slideshow

Summary

add_auth adds a new authentication token to the access control list, ie the leases file. This is the action
taken by the wacslogin command after it has authenticated the user. It can also be used to update the user
preferences - it is used by wacslogin, wacspref and wacslogout.

Availability

add_auth is currently available only in perl. A php implementation is possible in a future release if
required.

WACS API: Core Module

45

Name
find_config_location — return the location of the requested config file

Synopsis
use Wacs;

scalar find_config_location(configuration_filename);

scalar configuration_filename;

Summary

find_config_location returns the location of the requested config file. It first checks the directory
specified by the WACS_CONFIG environment variable, and then tries the built-in list of possible WACS
configuration file locations. This list is normally: /etc/wacs.d, then /usr/local/etc/wacs.d
and finally /opt/wacs/etc/wacs.d . If the specified file is not found in any of these locations, a
null string is returned.

Note

The location specified by the environment variable WACS_CONFIG takes precidence, if and
only if the requested file is present there. The normal directories are searched afterwards if
the file is not found in the directory specified.

Availability

find_config_location is available in both perl and php.

WACS API: Core Module

46

Name
conf_get_attr — get the specified attribute from the config file values

Synopsis
use Wacs;

scalar conf_get_attr(configuration_section, configuration_attribute);

scalar configuration_section;
scalar configuration_attribute;

Summary

conf_get_attr returns the specified attribute from the config file or it's default value if not specified
there. The WACS configuration files are divided into a number of logical sections; the first parameter
specifies which of these is required: amongst those defined are database, tables, fsloc,
server, security, download, colours, layout, precedence and debug. Please
see the WACS configuration guide and sample wacs.cfg files for more information on what information
is available.

Availability

conf_get_attr is available in both perl and php.

WACS API: Core Module

47

Name
auth_get_attr — get the specified attribute from the authorisation file values

Synopsis
use Wacs;

scalar auth_get_attr(ip_address, authorisation_attribute);

scalar ip_address;
scalar authorisation_attribute;

Summary

auth_get_attr returns the specified attribute from the authorisation file or it's default value if not
specified there. These look ups are based on the IP address of the host - typical attributes include the user
name, the preference exclusions, the role, and the various preference settings - see add_auth for more info.

Availability

auth_get_attr is available in both perl and php.

WACS API: Core Module

48

Name
dberror — produce a more helpful error page when db connections fail

Synopsis
use Wacs;

dberror(...);

Parameters

parameter description

header Whether to add an HTML preamble or not: n for no, y for yes.

message The message the end-user should recieve

error The error message returned from the database routines; logged in the web
server error log

dbuser The database user account with which the access was being attempted, from
the config file's dbuser entry.

dbhost The host specification of the database that it was trying to access, from the
config file's dbiconnect entry when using perl, and the phpdbconnect
entry when using PHP

Summary

The dberror function provides a detailed and hopefully helpful error message when the WACS sub-
system cannot connect to the database server. It also logs details of the failure to the web server error log.

Availability

dberror is available in both perl and php. It was introduced in Wacs 0.8.1.

WACS API: Core Module

49

Name
gettoday — get todays date and various relations thereof

Synopsis
use Wacs;

scalar gettoday(...);

Parameters

parameter description

format which format to return date in (DD-MON-YYYYY or YYYY-MM-DD) - default
is native format for the current database

epoch the actual date to convert in Unix seconds since 1970 format.

offset number of days different from today - assumed to be historial if postive, future
if negative - thus yesterday will be 1, a week ago will be 7, tomorrow will be -1.

Summary

The gettoday function returns either todays date or various deviations thereform - yesterday, a week
ago, two weeks ago, etc.

Availability

gettoday is available in both perl and php.

WACS API: Core Module

50

Name
timecomps — return seperated time components

Synopsis
use Wacs;

array timecomps(date_in_db_format);(format);

scalar date_in_db_format;

Summary

The timecomps breaks a database format date up into year, month and day components. The optional
format parameter can specify a non-native date format for conversion purposes.

Availability

timecomps is available in both perl and php.

WACS API: Core Module

51

Name
vendlink — provide (if possible) a link to the vendor's site for this model

Synopsis
use Wacs;

scalar vendlink(...);

Parameters

parameter description

vendor the vendor's reference (ie their vsite id)

page which page to get: valid options are directory, modelpage, bio,
vidindex, vidpage, imgpage, altpage, or signup .

name the model's name

key the model's key for this site

altkey the model's alternative key for this site

setkey the setkey if this request needs it (depends on the value of page above

sessionkey the session key (if required and known).

modelno the WACS model number for this request (believe me we occasionally need
this)

setno the WACS set number for this request (see above - this too)

dbhandle current handle to the database connection

Summary

The vendlink provides (if possible) a link to a page on the vendor's site for this model or set. Specify
the page you require using the page parameter - can link to any one of the many pages the vendor database
knows about.

Availability

vendlink is available in only in perl at present. If you need it in PHP, please put in a request for it on
the sourceforge tracker.

WACS API: Core Module

52

Name
getvaluename — provide the long name for the specified value of specified type

Synopsis
use Wacs;

scalar getvaluename(...);

Parameters

parameter description

object The object you want the mapping for - see geticonlist below

value The value you want mapped to it's long format (often a single character.

Summary

The getvaluename function returns the long (readable) name for the specified short value of specified
fixed values attribute type. For instance, if you want to get the long name for type "M", you call
getvaluename with object=>"types" and value=>M and getvaluename will return
Masturbation.

Availability

getvaluename is available in both perl and php.

WACS API: Core Module

53

Name
geticonlist — return the array of attributes to filename/long name mappings.

Synopsis
use Wacs;

hashref geticonlist(requested_object);

scalar requested_object;

Summary

The geticonlist function returns an array/ hashref of the legal values for the requested type object. In
some cases this will be the filenames of the icon for the attributes; in other cases it'll be the single character
legal values and their long form names. Valid requests include: models, sets, types, media,
dstatus, regions, flags and pussy.

Availability

geticonlist is available in both perl and php.

WACS API: Core Module

54

Name
gettypecolour — return the background colour for this type of set

Synopsis
use Wacs;

scalar gettypecolour(set_type);

scalar set_type;

Summary

The gettypecolour returns the HTML colour specification for the background of the current set type.
Pass it the set stype value I, V, etc.

Availability

gettypecolour is available in both perl and php.

WACS API: Core Module

55

Name
divideup — make Camel-style text more readable and add HTML markup

Synopsis
use Wacs;

scalar divideup(original_text, divider, already_small_font);

scalar original_text;
scalar divider;
scalar already_small_font;

Summary

The divideup function returns a more readable version of the so-called Camel Style wording used in
creating WACS directories. It also embeds HTML directives to try and ensure that even long entries don't
take up too much space. The first argument is the original text (typically the field stitle from the sets
database), the second (divider) is typically the HTML break tag
 but could be other things like a table
divider sequence </td><td> . The third parameter signifies whether the font in use is already small -
if set to 0 (zero), HTML tags to reduce the font size be based on using size is -1 for long lines; if it's set to
1 (one) it'll be assumed they were already using size is -2, and will therefore use size = -3.

Availability

divideup is available in both perl and php.

WACS API: Core Module

56

Name
alsofeaturing — look for any other models also featuring in this set

Synopsis
use Wacs;

scalar alsofeaturing(...);

Parameters

parameter description

setno The set number of this set

primary The model number we already know about for this set; exclude this model from
the results. Leave blank if you want all models listed.

staysmall stay in a small font - if this is set to Y font change specifications will not cause
a size change.

linkto which wacs application to link to (assumed to be in cgi-bin)

dbhandle current handle to the database connection

Summary

The alsofeaturing function returns a list of models featured in this set along with links to an
appropriate WACS application.

Availability

alsofeaturing is currently available only in perl. It is likely to be moved to WacsUI and also be
implemented in php in the near future.

WACS API: Core Module

57

Name
checkexclude — test for being a directory file or other reserved purpose name

Synopsis
use Wacs;

scalar checkexclude(filename);

scalar filename;

Summary

The checkexclude returns 1 if the file is one of those that should be excluded from consideration (ie
. or .. or one of ours like .info or .unpack). If the file looks genuine, returns 0.

Availability

checkexclude is available only in perl as it is just used for collection management tasks.

WACS API: Core Module

58

Name
checkindex — try to guess if this is an index image file

Synopsis
use Wacs;

scalar checkindex(filename);

scalar filename;

Summary

The checkindex tries to guess if a given file name is likely to be an index file or a regular image file
based upon it's name. If it's a name associated with index files, it returns 1; if it isn't checkindex returns
0.

Availability

checkindex is available in only perl as it is really only appropriate to collection management tools.

WACS API: Core Module

59

Name
makedbsafe — try to make the returned string safe for use in the database

Synopsis
use Wacs;

scalar makedbsafe(...);

Parameters

parameter description

string the string of text to be considered

allow characters to allow which are not normally acceptable: at present only forward
slash (/) is recognised

deny characters to deny which are normal acceptable: at present any space character
(space, tab, newline) given here will cause any whitespace characters to be
stripped out.

Summary

The makedbsafe function is designed to remove characters which are unsuitable for feeding to the
database. It normally works with a default set of rules, which implicitly disallows forward slash (but this
can be explicity allowed with allow=>'/'). Similarly white space can be removed from a file name
when required using the deny option.

Availability

makedbsafe is available in both php and perl. This function was added in Wacs 0.8.1.

WACS API: Core Module

60

Name
addheadercss — prints out the header cascading style sheet preamble

Synopsis
use Wacs;

addheadercss(css_preamble_type);

scalar css_preamble_type;

Summary

The addheadercss prints out the required css preamble to support the appropriate pull down menu
system. At present only one type, "csshoriz" is recognised, but additional options can be added.

Availability

addheadercss is available in both perl and php.

WACS API: Core Module

61

Name
setgroupperms — set group permissions to allow both command line and web management of sets.

Synopsis
use Wacs;

setgroupperms(...);

Parameters

parameter description

target pathname of the file or directory to update

group the unix group to set permissions to (usually wacs, can be obtained with
conf_get_attr on security -> admingroup.

mode access mode that should be set - typically ug+rwX.

Summary

The setgroupperms function sets the group permissions on the specified file to allow updating by both
command line tools and the web interface. This is typically done by making all files group-writeable to
the wacs group of which both apache and the approved WACS administrative users should be members.

Availability

setgroupperms is available only in perl as it is used only for collection management tasks.

62

Chapter 7. WACS API: User Interface
Module
User Interface Module: Summary

Table 7.1. Function Summary: User Interface Module

function description

describeher tries to make a sensible sentance out of model data

whatshedoes describes the kind of sets this model appears in

addkeyicons makes a little HTML table with the attribute icons

addratings makes a little HTML table with the set ratings

iconlink build a link around the icon for this set

addlinks add standard top-of-the-page menus

read_menu read the XML menu files and create menu record structure

menu_get_default get the default link for the menu title

menu_get_title get the menu title itself

menu_get_body get the body of the menu

menu_get_entry get a single entry from the menu

User Interface Module: Reference

WACS API: User Interface Module

63

Name
describeher — tries to make a sensible sentance out of model data

Synopsis
use Wacs;

use WacsUI;

scalar describeher(...);

Parameters

parameter description

hair The colour of her hair

length The length of her hair

titsize The size of her breasts

cupsize The cupsize of her breasts if known

pussy The usual style of her pubic hair

race Her race (in broad terms)

eyes The colour of her eyes

distmarks distingishing marks - easy ways to recognise her

build her phyiscal build/body type

height her height in centimetres (NB: field not suitable for imperial values)

weight her weight in kilograms (NB: field not suitable for imperial values)

vitbust her bust measurement in centimetres

vitwaist her waist measurement in centimetres

vithips her hips measurement in centimetres

occupation her occupation (if stated)

aliases other names she's known by

Summary

The describeher tries to make a readable biography entry out of the various model attribute parameters
in the model table. The result is returned as a string.

Availability

describeher is available in both perl and php.

WACS API: User Interface Module

64

Name
whatshedoes — describes the kind of sets this model appears in

Synopsis
use Wacs;

use WacsUI;

scalar whatshedoes(...);

Parameters

parameter description

solo does she feature in solo sets (Y, N)

straight does she feature in straight sets (Y, N)

lesbian does she feature in lesbian sets (Y, N)

fetish does she feature in any sets flagged as fetish

toys does she use toys in any of her sets

masturbation does she masturbate in any of her sets

other does she do any activites marked as other

Summary

The whatshedoes function takes the truth values for doing certain kinds of activities and makes it into
a descriptive sentence which is returned as a string.

Availability

whatshedoes is available in both perl and php.

WACS API: User Interface Module

65

Name
addkeyicons — makes a little HTML table with the attribute icons in

Synopsis
use Wacs;

use WacsUI;

addkeyicons(list_of_attribute_keywords, icon_size);

scalar list_of_attribute_keywords;
scalar icon_size;

Summary

The addkeyicons function takes a space seperated list of attribute keywords such as the sets table
scatinfo field or the models table mattributes field and prints out the associated icons in a small
HTML table. It scales the icons to the specified size in doing so.

Availability

addkeyicons is available in both perl and php.

WACS API: User Interface Module

66

Name
addratings — makes a little HTML table with the ratings icons in

Synopsis
use Wacs;

use WacsUI;

addratings(...);

Parameters

parameter description

overall The overall rating for the set (1 to 5)

variety How unusual the content or action of the set is

techqual The technical quality of the photography, lighting and set

size How big the icons should be: normal or small

orientation whether the table should be vertical or horizontal

title display title on table: y for yes, n for no.

Summary

The addratings function is similar to addkeyicons in that it outputs an HTML table with icons in.
In this case, it's the ratings icons for each of the three main set ratings: overall, variety and techqual. It can
display the table in two sizes, with or without a title and in a horizontal or vertical orientation.

Availability

addratings is available in both perl and php. This function was introduced in Wacs 0.8.1

WACS API: User Interface Module

67

Name
iconlink — build a link around the icon for this set

Synopsis
use Wacs;

use WacsUI;

iconlink(...);

Parameters

parameter description

type set type value (I, V, etc)

setno The set number

sarea The toplevel area of the set

scategory The middle level area of the set

sdirectory The lower level area of the set

model The model's name - used in the alt tag in the images

resize Whether to resize or not - 0 is actual size, 1 is rescaled to standard size, 2 is
rescaled to mini size

destloc Which configuration variable to use for location of link destination application
- typically cgiurl for perl scripts and wacsurl for php scripts

destapp The stem of the URL to link to around the icon, something like wacsindex/
page, needs to include any parameter introducers like page or setid=

destext The extension of the URL to link to, or null, ie .html or .php

Summary

The iconlink function displays the icon for a set at the requested size surrounded by an appropriate
link to the set concerned.

Availability

iconlink is available in both perl and php. The destloc, destapp and destext options are only
available in 0.8.1 or later.

WACS API: User Interface Module

68

Name
addlinks — add standard top-of-the-page menus

Synopsis
use Wacs;

use WacsUI;

addlinks(...);

Parameters

parameter description

myname name of the calling program

context general area of the current page: possible values are modelindex,
models, search, tags, newimage, newvideo or admin

title Title of the menu (not currently used)

exclude name of link to exclude (normally this apps name so it doesn't link to itself

mode menu mode: either normal for old-style simple top line menu or csshoriz
to use javascript pull down menus

options optional parameter list (array)

optdesc matching descriptions for the above

Summary

The addlinks function is a generalised interface to adding a top of the page menu - you specify a general
category into which the page you're writing falls, and it adds an appropriate selection of the standard menus.

Availability

addlinks is currently only available in perl. It is assumed php programmers will want more fine-grained
control over their menus and so it has not been implemented.

WACS API: User Interface Module

69

Name
read_menu — read the XML menu files and create menu record structure

Synopsis
use Wacs;

use WacsUI;

read_menu(menu_filename);

scalar menu_filename;

Summary

The read_menu reads the specified menu XML file into the internal data structures of the wacsui
object. It should be called before using any of the other menu routines. For the standard system menus,
the collection management tools use the file menu.cfg in the wacs config directory (usually /etc/
wacs.d). You can edit the standard menu file to add your own additional menu definitions for use in
specific applications. If your application wishes to use an alternate namespace, you could specify an
alternate menu config name, something like mysite.cfg and also place it in the wacs config directory.

Availability

read_menu is available in both perl and php.

WACS API: User Interface Module

70

Name
menu_get_default — get the default link for the menu title

Synopsis
use Wacs;

use WacsUI;

scalar menu_get_default(...);

Parameters

parameter description

name the menus name; typically in lower case (eg navigation)

caller name of the calling application

exclude applications to exclude from menus; typically the calling application itself

options an array of options to be substituted.

optdesc a matching array of descriptions

Summary

The menu_get_default returns the default link for the top-of-the-page menu title before the menu
pull-down is activated. Normal substitutions are applied to this option if specified.

Availability

menu_get_default is available in both perl and php.

WACS API: User Interface Module

71

Name
menu_get_title — get the menu title itself

Synopsis
use Wacs;

use WacsUI;

scalar menu_get_title(...);

Parameters

parameter description

name Name of the menu whose title you want

Summary

The menu_get_title function returns the readable title for the specified menu. This is typically what
the link address returned by menu_get_default will surround.

Availability

menu_get_title is available in both perl and php.

WACS API: User Interface Module

72

Name
menu_get_body — get the body of the menu

Synopsis
use Wacs;

use WacsUI;

scalar menu_get_body(...);

Parameters

parameter description

name name of the menu concerned

caller name of the program calling it

exclude name of program to exclude from menus

options array of options to use

optdesc array of matching descriptions for the options above

isarea hashref/array of image-based sarea values

vsarea hashref/array of video-based sarea values

mflags hashref/array of model flags

vsites hashref/array of vendor codes and names

pre prefix for generated entries (eg <a href=\")

intra middle section for generated entries (eg \">)

post postfix for generated entries (eg)

Summary

The menu_get_body function returns a big string containing the HTML formatted body of the requested
menu. Using the pre, intra and post parameters you can include the correct entry pre-amble, mid-section
and tail-section for your desired menu layout.

Availability

menu_get_body is available in both perl and php.

WACS API: User Interface Module

73

Name
menu_get_entry — get a single entry from the menu

Synopsis
use Wacs;

use WacsUI;

scalar menu_get_entry(...);

Parameters

parameter description

name name of the menu concerned

caller name of the program calling it

entry hashref/array of the current entry object from menu tree

options array of options to use

optdesc array of matching descriptions for the options above

isarea hashref/array of image-based sarea values

vsarea hashref/array of video-based sarea values

mflags hashref/array of model flags

vsites hashref/array of vendor codes and names

pre prefix for generated entries (eg <a href=\")

intra middle section for generated entries (eg \">)

post postfix for generated entries (eg)

Summary

The menu_get_entry takes an individual menu entry (which may result in multiple menu entry lines)
and processes it into a string that is returned. It is available seperately as it can be called with custom
parameters via options and optdesc to do specific non-standard parameters.

Availability

menu_get_entry is available in both perl and php.

74

Chapter 8. WACS API: Standard
Components Module
Standard Components Module: Summary

Table 8.1. Function Summary: Standard Components Module

function description

masthead creates a top-of-the-page summary for any page handling set

modelheads adds the icons with links for model(s) specified

findmodel creates a table and choice box for models with a given name

kwscore_reset resets the keyword scoring system back to defaults

kwscore_process process the provided string looking for keywords

kwscore_get get the specified result from the processing of the strings provided previously

removedups remove duplicates from an attribute string

removeconflicts remove items that contradict the set attributes from the model attributes

Standard Components Module: Reference
The WacsStd module contains standard components for building the standard WACS collection
management tool interface. Since all these tools are written in perl, this module is only implemented in perl.

WACS API: Standard
Components Module

75

Name
masthead — top of page banner for set-based apps

Synopsis

use WacsStd;

masthead(...);

Parameters

parameter description

setno The set number

stype The set type (single letter database format)

scatinfo The attributes for the set

scatflag The set type flag (single letter database format)

stitle The assigned set title, aka standard description

sofftitle The official title (usually from original site)

sarea Toplevel directory entry

scategory Middle level directory entry

sdirectory lowest level - actual holding directory (filename for videos)

simages Number of images in the set

sindexes Number of index images for the set

saspect aspect ratio (mainly for videos)

sformat file format for this set (.jpg, .png, .mov, .wmv etc)

sdurhrs video or DVD scene duration - hours value

sdurmin video or DVD scene duration - minutes value

sdursec video or DVD scene duration - seconds valus

sphotog photographer reference code (references pref in photographer)

sfoundry organisation where the set came from

modelno associated model number

downloadno associated download record number

useicon when working with a set number 0, attempt to get an icon by asking for a
thumbnail of the first image

addlinks add set browsing links to the masthead centre section

width make the masthead table the specified width only

dbhandle the current database handle object

Summary

masthead generates a standard top-of-the-page banner heading for any page that is intended to document
or amend a standard set record. It does a best efforts with whatever fields it has passed to it.

WACS API: Standard
Components Module

76

Availability

masthead is only available in Perl.

WACS API: Standard
Components Module

77

Name
modelheads — adds the icons with links for model(s) specified

Synopsis
use WacsStd;

modelheads(lookup_method, set_number, dbhandle);

scalar lookup_method;
scalar set_number;
scalar dbhandle;

Summary

The modelheads function was originally written as part of the implementation of masthead but has
broader uses. It provides a table of a model (or group of models) headshots with ratings and name. The
lookup_method can be one of byset (where it's the models featured in the specified set number) or
byno (where the second argument is the model number rather than the set number). The default option
in other cases is any models who've been added today - it is recommended you specify bydate and pass
the date for this option.

Availability

modelheads is currently only available in perl.

WACS API: Standard
Components Module

78

Name
findmodel — creates a table and choice box for models with a given name

Synopsis
use WacsStd;

use WacsUI;

findmodel(...);

Parameters

parameter description

mname the model name or beginning of the name to look for

offeralt Whether to offer an alternative choice or not: y or n

offervalue What the value returned for the alternative should be, eg next

offercapt What the caption for the alternative value should be

incsubmit Whether to include a submit button or not: y or n

dbhandle pointer to the currently active database handle

cgihandle pointer to the currently active CGI object

Summary

The findmodel function takes the name of a model and searches the database for who it might
concievably be. It checkes the model's name, her aliases and the name from each of her ID map entries.
It presents a headshot, description, and a radio button to allow her to be choosen. It can optionally offer
an additional radio button for another purpose. The choosen model's number or next will be returned in
a CGI variable called modelno.

Availability

findmodel is only available in perl at this time

WACS API: Standard
Components Module

79

Name
kwscore_reset — resets the keyword scoring system back to defaults

Synopsis
use WacsStd;

kwscore_reset(scope);

scalar scope;

Summary

The kwscore_reset function resets the currently built attributes table. It is possible to run the
kwscore_process function several times with different fields from the database and so it does not
naturally reset the internal table of results - this call provides that facility and should always be called
before each new set to consider. The scope parameter is currently ignored but may in future modify the
behaviour.

Availability

As keyword scoring is a collection administration activity, it is currently only implemented in perl.

WACS API: Standard
Components Module

80

Name
kwscore_process — process the provided string looking for keywords

Synopsis
use WacsStd;

kwscore_process(...);

Parameters

parameter description

string the string to be processed against the keyword database

dbhandle the database session object pointer

Summary

The kwscore_process function allows you to submit a string to the keyword scoring system for
consideration. It's scores will be stored allowing both retrieval of results and modification of those results
by subsequent invocation of the kwscore_process with alternative strings. It is perfectly possible
to consider both the title (field stitle) and the official title (field sofftitle) if that is appropriate.
It could also be run on the description of the set if that is present.

Availability

As a collection administration function, kwscore_process is currently only available in perl.

WACS API: Standard
Components Module

81

Name
kwscore_get — get the specified result from the processing of the strings provided previously

Synopsis
use WacsStd;

kwscore_get(...);

Parameters

parameter description

what which result you are requesting: valid ones are: cat, loc, det, attr
or other.

default a default value you want returned if nothing is found for this request

Summary

The kwscore_get function retrieves the results from any kwscore_process calls made since the
last kwscore_reset. The what argument specifies what to return:- cat returns a category flag
(scatflag etc.), loc returns a location (slocation), det returns a detailed location (slocdetail,
attr returns the attributes (scatinfo and other is available for future expansion.

Availability

As a collection administration function, kwscore_get is currently only available in perl.

WACS API: Standard
Components Module

82

Name
removedups — remove duplicates from an attribute string

Synopsis
use WacsStd;

scalar removedups(raw_attribute_list);

scalar raw_attribute_list;

Summary

The removedups function removes any duplicate entries from a space-separated list of attributes - this
is typically necessary when merging more than one source of attribute information like that from the
kwscore_get function and the result of fetching model attributes. Please also see removeconflicts
function below.

Availability

As a collection administration function, removedups is currently only available in perl.

WACS API: Standard
Components Module

83

Name
removeconflicts — remove items that contradict the set attributes from the model attributes

Synopsis
use WacsStd;

scalar removeconflicts(...);

Parameters

parameter description

model The model's attributes (mattributes field)

existing The existing combined attributes (ie those taken from the set scatinfo field

Summary

The removeconflicts is designed to stop contradictory overwriting of mutually exclusive model
attributes - typically those relating to pubic hair trimming, as these can often vary between sets of the
same model. It is provided with the model's attributes plus the existing set attributes - if the existing set
attributes do not include a contradictory value, then the model's attributes are included. If there's a conflict,
the model's pubic hair attribute is dropped in favour of that in the set. This is usually the correct behaviour.
This if a model is normally considered to have a shaven pussy, but appears in a set before she's shaven it
(or even as she does so), then the set may be marked with the hairy attribute. If that is there, the model's
default of shaven will be removed and only her other attributes (tattoos, piercings, etc) will be imported.

Availability

As a collection administration function, removeconflicts is currently only available in perl.

84

Chapter 9. WACS API: Identification
Module

Identification Module: Summary
Warning

The existing identification module has many flaws and it is intended to massively overhaul
it in the near future. We would not recommand utilising functions from this module at the
present time. If you need a particular routine listed here, please contact us and we'll consider
moving it to one of the more stable modules if appropriate

WACS API: Identification Module

85

Table 9.1. Function Summary: Identification Module

function description

ident_img Identify characteristics of an image set from download info

ident_vid Identify characteristics of a video clip from download info

reset_attr reset the global attribute table

id_get_flag get previously determined flag (run ident_* first)

id_get_info get previously determined catinfo (run ident_* first)

id_get_photog get previously determined photographer (run ident_* first)

id_get_dnldno get download record number

id_get_modelno get the model number

id_get_modelname get the model's name

id_get_vendor get the vendor reference

id_get_dbhandle get the current DB handle

id_get_key get the current models id at the current vendor

id_get_setkey get the set key at the current vendor

id_get_setname get the name of the most recent set

id_get_status get the status of the most recent set

id_get_notes get the current value of the notes field

id_get_setno get the current value of the setno field

addassoc Add a new model/set association

dnld_img retrieve a download record based upon the namestem

dnld_markdone mark the download as having been done

dnld_checkadd take a download specification and if not existing, add it

dnld_update update an attribute in the download record

vend_dnld return the download location for this vendor

alloc_nextkey allocate the next free primary key for named table

find_cookies find the current web browser cookies file (firefox only)

vid_getsize get the size of a video clip

extractphotog find the photographer name (only works on ATK at present)

find_namestem find the common stem of a file name

id_mpage process a modelpage looking for links to suitable sets

chk_vid_type check to see if this url is a video file type

Part III. WACS Database Schema
This is the Database Schema Reference Manual, or data dictionary, for the WACS environment. This documents the
database tables in use, their contents, structure, relationships and assigned values.

The WACS database schemas are built with the convention that the first letter of the schema name is prefixed to all
fields within that schema. Thus a field from the sets schema will start with the letter s, a field from the assoc schema
will start with the letter a and so on. Generally relationed fields will have fundamentally the same name, such that the
set number is setno in the sets schema, asetno in the assoc schema, tsetno in the tags schema, dsetno in the
download schema, and so on. This makes performing relational joins much easier and more portable since one can
do the likes of where amodelno = modelno without any ambiguity and without having to specify the table
name explicity.

Where possible fields with a limited set of possible values will be single character fields with a reasonably neumonic
value for each possible value. Thus the media type (stype, dtype, etc) is V for Video Clip, I for Image Set, D
for DVD scene, and so on. A lookup hash of the legal values will typically be available for programmers to use from
the core Wacs module (see the Part II, “WACS API Programming Reference” for more details).

Chapter 10, Schema Reference: Sets
Chapter 11, Schema Reference: Assoc
Chapter 12, Schema Reference: Idmap
Chapter 13, Schema Reference: Models
Chapter 14, Schema Reference: Download
Chapter 15, Schema Reference: Photographer
Chapter 16, Schema Reference: Tag
Chapter 17, Schema Reference: Vendor
Chapter 18, Schema Reference: Conn
Chapter 19, Schema Reference: Keyword

87

Chapter 10. Schema Reference: Sets
Sets: Schema SQL

create table sets
(setno number(9) primary key,
 stype char(1) not null,
 sstatus char(1) not null,
 sauto char(1),
 srating char(1),
 sflag char(1),
 stechqual number(2),
 svariety number(2),
 svisits number(2),
 sformat varchar2(10),
 scodec varchar2(40),
 stitle varchar2(240),
 sofftitle varchar2(240),
 sofficon varchar2(160),
 saddicon varchar2(160),
 sname varchar2(80),
 shair varchar2(80),
 smodelno varchar2(40),
 slocation varchar2(20),
 slocdetail varchar2(40),
 sattire varchar2(20),
 sphotog varchar2(6) references photographer,
 ssource varchar2(80),
 sfoundry varchar2(80),
 sproddate date,
 sreldate date,
 suscattr char(1),
 snotes varchar2(240),
 sdesc varchar2(2048),
 sindexes number(6),
 simages number(6),
 sdurhrs number(2),
 sdurmin number(2),
 sdursec number(2),
 slandx number(6),
 slandy number(6),
 sportx number(6),
 sporty number(6),
 saspect varchar(10),
 sbytes number(12),
 sdvdno number(6),
 sdvddisc number(2),
 sdvdtitle number(3),
 sdvdstartch number(3),
 sdvdendch number(3),

Schema Reference: Sets

88

 sidlogo char(1),
 serrors char(1),
 sduplicates number(9),
 scatinfo varchar2(160),
 scatflag char(1),
 snamestem varchar2(80),
 sdownload varchar2(160),
 sarea varchar2(160),
 scategory varchar2(160),
 sdirectory varchar2(240),
 scomments varchar2(240),
 sadded date,
 samended date
);

Note

sattire is a new field introduced into the schema in release 0.8.1; it will not be used until
the 0.8.2 release cycle (or later). It is intended to hold a general category of the model's
clothing, derived from keywords; expected to include values like Casual, Sports, Lingerie,
Elegant, etc.

Sets: Defined Values

Table 10.1. stype: Type of Set: defined values

stype

I Image Set

V Video Clip

A Audio File

S DVD Scene

Table 10.2. sstatus: Status of Set: defined values

sstatus

M Manually Added, Details Not Checked

A Automatically Added, Details Not Checked

N Normal - Checked

G Good - Thoroughly Checked

U Unknown

Schema Reference: Sets

89

Table 10.3. sauto: Automatic Update of Set Allowed?: defined values

sauto

N None (no auto updates)

L (on-disk) Location only - all attributes manual

A Append only - all existing entries stay

F Fully auto-generated - all values can change

Table 10.4. srating: Overall Rating For The Set: defined values

srating

5 Finest

4 Very Good

3 Good

2 Reasonable

1 Mediocre

0 None Specified

Table 10.5. stechqual: Technical Quality Rating For The Set: defined values

srating

5 Finest - HD Video done well, Multi-megapixel stills

4 Very Good - Well lit SD or good HD Video, good megapixel + stills

3 Good - Well done low-res SD, good sub-megapixel stills; not quite so good
but higher res

2 Reasonable - either very small, or bad equipment (flash on camera) used
moderately well

1 Mediocre - lack of skill, bad equipment, poor composition

0 None Specified

Table 10.6. svariety: Unusualness Rating For The Set: defined values

svariety

5 Very Unusual - look at the set scenario and think "What the F***!"

4 Unusual - unusual and very interesting - "Wow"

3 Neat - interesting and impressive but not quite "Wow"

2 Cute Twist - a slightly unusual twist, unusual pose etc

1 Ordinary - can still score very highly in overall and tech

0 None Specified

Schema Reference: Sets

90

Table 10.7. sformat: Format of the File(s) In The Set: defined values

sformat

JPEG JPEG image

GIF GIF image

PNG PNG image

PNM PNM,PBM,PGM,PPM image

WMV Windows Media Player Video

AVI AVI Video (codec specified separately)

QT QuickTime .mov Video (codec specified separately)

MPEG MPEG Video (MPEG-1 or 2)

Table 10.8. sidlogo: Presence of Burnt-in Logo: defined values

sidlogo

U Unknown

Y Yes - image/video has burnt-in logo

N No - image/video is clean of bugs

Table 10.9. serrors: Presence of Known Errors: defined values

serrors

N None detected

F Fixed - faulty images/video have been fixed - Quality may have been
compromised - sizes/signatures no indicative of original

E Encoding Only - causes message but renders OK

C Some Corrupt Images/Segments of video

Table 10.10. scatflag: Generalised type of the set: defined values

scatflag

F Fuck - straight sex

L Lesbian - lesbian sex

G Group - more than two people having sex, mixed-gender

T Toy - Solo but uses toys such as dildo, vibrator, etc

S Solo - Model on her own (possibly with a non-participatory audience)

M Masturbation - Solo but includes masturbation activities

N None - not determined yet

B Backstage - Behind The Scenes set featuring this model

C Clothed - non-nude set featuring this model

D Duplicate - duplicate set - maybe from a different site

Schema Reference: Sets

91

Table 10.11. slocation: generalised description of locations: recommended values

slocation (recommended values)

Note

This is a Recommended Values list only; additional values can be added as appropriate

Balcony Balcony or Terrace; outdoors but not part of Garden

Bathroom Bathroom, Toilet or Shower Cubicle

Bedroom Bedroom or other sleeping area

Country Country - including Beach, Forest, and Fields

Dining Room Dining Room or Eating Area

Garden Garden or other private outdoor area

Hallway Hallway, Staircase or Entrance

Kitchen Kitchen or Kitchen area of apartment

Laundry Laundry, Cleaning or Utility Area

Lounge Lounge, Sitting Room or Other Seating Area

Office Office, including Home PC desk

Other Room Any other room - (Domestic) Library, Junk Room, Garage, etc

Specialised Specialised Location: Swimming Pool, Shop, Recording or TV Studio,
Factory, Railway Station, etc; additional details can be placed in slocdetail.

Sports Location associated with Sports and Exercise: Gym, Locker Room, etc.

Studio White or other plain background Photographic Studio - but NOT Television or
Audio recording studios as a feature of the set theme

Table 10.12. suscattr: how to generate the 18 USC 2257 declaration: defined values

suscattr

V Vendor based - use vendor's USC declaration address

P Photographer based - use photographer's address for USC declaration

N Suppress declaration - NOT RECOMMENDED FOR US RESIDENTS

G Generic - include generic text with all vendor addresses

92

Chapter 11. Schema Reference: Assoc
Assoc: Schema SQL

create table assoc
(assocno number(9) primary key,
 amodelno number(6) references models,
 asetno number(9) references sets,
 astatus char(1),
 aadded date,
 aamended date
);

Assoc: Defined Values

Table 11.1. astatus: association status: defined values

astatus

M Manually Added

G Generated Automatically

R Relationship entry - not the primary model for this set.

93

Chapter 12. Schema Reference: Idmap
Idmap: Schema SQL

Note

A possible future direction is for this table to be relationally linked to the vendors table such
that idmap.isite = vendor.vsite

create table idmap
(identryno number(7) primary key,
 imodelno number(6) references models,
 istatus char(1),
 isite varchar2(20) not null,
 ikey varchar2(30),
 ialtkey varchar2(30),
 iname varchar2(30),
 inotes varchar2(80),
 iactive char(1),
 ichanged date,
 ichecked date,
 iadded date,
 iamended date
);

Idmap: Defined Values

Table 12.1. istatus: idmap status: defined values

istatus

M Manually Added

A Generated Automatically

I Imported From Another WACS site

Table 12.2. iactive: model activity status as this identity: defined values

iactive

Y Yes - active model (refresh list with auto tools)

D Dormant - no new sets for a while (don't bother checking)

N No - inactive (id not known)

O Obsolete - old reference (no longer there)

Schema Reference: Idmap

94

Table 12.3. isite: Some recommended site abbrievations: recommended values

isite (recommended values)

Note

This is a Recommended Values list only; additional values can be added as appropriate

ALS ALSScan.com

AMK AMKingdom.com (aka ATK Galeria)

ATE ATKExotics.com

ATKP ATKPremium.com

AW AbbyWinters.com

FJ FemJoy.com

IFG infocusgirls.com

JAFN jennyandfriends.net

KPC karupspc.com (aka Karup's Private Collection)

KHA karupsha.com (aka Karup's Hometown Amateurs)

SE sapphicerotica.com

TF teenflood.com

WACSD WACS Demo site (coming soon)

95

Chapter 13. Schema Reference: Models
Models: Schema SQL

Note

Please notice that the use of metric in the vital statistics is not intended to be a dig at
the imperial measurements, merely that it reliably and consistantly conveys the necessary
information as sensible, manageable integers. Utility functions are planned to make it easier
to convert and update in a future release of WACS. You try writing an SQL query to find
models between 5ft 3ins and 5ft 6ins in height, as compared to between 160 and 168 cms
in height. See what I mean?

create table models
(modelno number(6) primary key,
 mname varchar2(40),
 mhair varchar2(15),
 mlength varchar2(20),
 mtitsize varchar2(10),
 mcupsize char(1),
 meyes varchar2(15),
 mrace varchar2(15),
 mattributes varchar2(60),
 maliases varchar2(60),
 mdisting varchar2(80),
 musual varchar2(60),
 mimage varchar2(80),
 mbigimage varchar2(80),
 mstatus char(1),
 mrating char(1),
 mpussy char(1),
 mflag char(1),
 mvideos char(1),
 msolo char(1),
 mstraight char(1),
 mlesbian char(1),
 mfetish char(1),
 mmast char(1),
 mtoys char(1),
 mother char(1),
 mnsets number(4),
 mnimages number(7),
 mnvideos number(4),
 mcountry varchar2(30),
 mhometown varchar2(80),
 mage number(3),
 mageyear number(4),
 mcstatus char(1),
 mvitbust number(4),
 mvitwaist number(4),

Schema Reference: Models

96

 mvithips number(4),
 mbuild char(1),
 mheight number(3),
 mweight number(3),
 moccupation varchar2(30),
 mcontact varchar2(80),
 mnotes varchar2(240),
 mbio varchar2(240),
 madded date,
 mamended date
);

Models: Defined Values

Table 13.1. mstatus: model record status: defined values

mstatus

A Automatically Added, Details Not Checked

M Manually Added, Details Not Checked

N Normal - Checked

G Good - Thoroughly Checked

P Placeholder - Not Real Person

Table 13.2. mrating: model rating: defined values

mrating

5 Finest (included in Q= searches and front page)

4 Very Good (included in Q= searches and front page)

3 Good (not included in Q= searches, included in front page)

2 Reasonable (not included in Q= searches or front page)

1 Mediocre (not included in Q= searches or front page)

0 None Specified (listed in U= searches)

Table 13.3. mpussy: model's normal pubic hair style: defined values

mpussy

H Hairy

T Trimmed

B Brazilian style shaved - very little hair above clit area

S Shaven - completely

V Varies (best avoided, try and pick one of above - her usual style)

N Not Specified

Schema Reference: Models

97

Table 13.4. mflag: special marking flag for models: defined values

mflag

S Favourite Solo

L Favourite Lesbian

C Favourite Cutie

F Favourite Straight

M Current Featured Model

P Placeholder (not a real person)

Table 13.5. model activites flags: defined values

model activities flags

fieldname possible values

Note

Automatically updated by updatestats

mvideos

msolo

mstraight

mlesbian

mfetish

mmast

mtoys

mother

Y - Yes, does this; N - No, doesn't do this

Table 13.6. mcstatus: accuracy of home country field: defined values

mcstatus

C Certain - country of origin stated in bio

I Inferred - from location or other models seen with

G Guess - based on photographer or building style

N None

Schema Reference: Models

98

Table 13.7. mrace: race of the model: defined values

mrace

Caucasian Caucasian - European Descent aka White

Oriental Oriental - Chinese, Japanese, SE Asian

Asian Indian Sub-Continent - India, Pakistan, etc

Negroid Negroid - of African Descent aka Black

Aboriginal Aboriginal - indigenous peoples - First Nation, Polynesian, etc

Latina Latin American - aka Hispanic

Mixed Mixed race and others

Table 13.8. mbuild: body type of the model: defined values

mbuild

V Very Slim

S Slim

M Medium

H Heavy

Table 13.9. vital statistics: meanings

vital statistics

mweight Weight in Kilos

mheight Height in centimetres

mvitbust Bust measurement in centimetres (vital stats part 1)

mvitwaist Waist measurement in centimetres (vital stats part 2)

mvithips Hips measurement in centimetres (vital stats part 3)

99

Chapter 14. Schema Reference:
Download
Download: Schema SQL

create table download
(downloadno number(7) primary key,
 dmodelno number(6) references models,
 dsetno number(9) references sets,
 dstatus char(1),
 dtype char(1),
 dsite varchar2(20) not null,
 dkey varchar2(30),
 dsetkey varchar2(40),
 dsetname varchar2(240),
 dsetflag char(1),
 dnotes varchar2(240),
 durl varchar2(240),
 darchive varchar2(240),
 dsignature varchar2(82),
 dsize number(9),
 dpulled date,
 dadded date,
 damended date
);

Download: Defined Values

Table 14.1. dstatus: download status: defined values

dstatus

U Not Yet Attempted

F Failed - Retry when possible

S Successful - set registered in database, available

P Pending - downloaded, awaiting unpacking

A Aborted - don't download for some reason

D Deferred - held back from being downloaded

R Relationship Entry - a second model for a set

L Liasion - a proto-Relationship Entry not yet linked

E Error - not the right model, etc

I In Progress - download currently in progress

X Incomplete - record of it's existance but too little info to download it

Schema Reference: Download

100

Table 14.2. dtype: download set type: defined values

dtype

I Image Set

V Video Clip

A Audio File

Table 14.3. dsetflag: Suggested value for scatflag based on parsing result

dsetflag

Note

Any valid value for scatflag from the sets table. This is a hint on the set type based upon
the parsing process picking out keywords

101

Chapter 15. Schema Reference:
Photographer

Photographer: Schema SQL

create table photographer
(pref varchar2(6) primary key,
 pname varchar2(40),
 paliases varchar2(80),
 pgender char(1),
 paddress varchar2(120),
 pemail varchar2(80),
 pwebsite varchar2(80),
 pusual varchar2(40),
 pregion varchar2(20),
 pcountry varchar2(50),
 plocation varchar2(50),
 pstyledesc varchar2(80),
 prating number(2),
 phardness number(2),
 psolo char(1),
 ptoys char(1),
 plesbian char(1),
 pstraight char(1),
 pgroup char(1),
 pfetish char(1),
 pdigital char(1),
 pfilm char(1),
 pvideo char(1),
 phdvideo char(1),
 pcamera varchar2(40),
 pcamnotes varchar2(80),
 pcomments varchar2(240),
 pnotes varchar2(240),
 pbiography varchar2(1024),
 padded date,
 pamended date
);

Photographer: Defined Values

Schema Reference: Photographer

102

Table 15.1. pgender: gender of the photographer: defined values

pgender

M Male

F Female

U Unknown

Table 15.2. pregion: geographical location of the photographer: defined values

pregion

Europe Europe

North America USA and Canada

South America South and Central America

Middle East Middle East (brave photographer!)

Asia Asia (India and the Indian Sub-continent ONLY)

Orient Orient (Asia excluding Indian Sub-continent)

Australasia Australia and New Zealand

Africa Africa

Other Other

Table 15.3. prating: overall rating of photographer: defined values

prating

0 None

1 Awful - poor equipment and technique

2 Poor - uninteresting and badly composed/exposed work

3 Reasonable - technically OK, but very unenterprising

4 Good - good technique, interesting compositions and direction

5 Excellent - Excellent technique, interesting and challenging compositions and
direction

Table 15.4. phardness: rating of how explicit this photographer can be: defined
values

phardness

0 None - Not Rated

1 Soft-focus (very arty)

2 Glamour - sharp but no open leg, genital detail, etc

3 Normal - wide range of shots but not particularly strong

4 Hard (close-ups)

5 Fetish - pretty extreme, gaping, etc

Schema Reference: Photographer

103

Table 15.5. photographer activites covered flags: defined values

photographer activities covered flags

fieldname possible values

psolo

ptoys

plesbian

pstraight

pgroup

pfetish

Y - Yes, does this; N - No, doesn't do this; O - Occasionally does this

Table 15.6. photographer technologies used flags: defined values

photographer technologies used flags

fieldname possible values

pdigital

pfilm

pvideo

phdvideo

Y - Yes, uses this technology; N - No, doesn't use this technology.

104

Chapter 16. Schema Reference: Tag
Tag: Schema SQL

create table tag
(tagno number(9) primary key,
 tmodelno number(6) references models,
 tsetno number(9) references sets,
 tstatus char(1),
 tflag char(1),
 tgroup number(6),
 tdesc varchar2(40),
 towner varchar2(20),
 texpiry date,
 tadded date,
 tamended date
);

Tag: Defined Values

Table 16.1. tstatus: tag entry status: defined values

tstatus

T Temporary - expire as per expiry rules

V Viewed, Temporary - expire as per expiry rules, hide from index

P Permanent - don't expire, show in index

A Archived - don't expire, don't show in normal indexes

Table 16.2. tflag: tag content type status: defined values

tflag

M Model-based tag entry

S Set-based tag entry

105

Chapter 17. Schema Reference: Vendor

Vendor: Schema SQL

create table vendor
(vsite varchar2(20) primary key,
 vname varchar2(45),
 vshortname varchar2(20) not null,
 vregion varchar2(20),
 vcountry varchar2(50),
 vweburl varchar2(120),
 vsignup varchar2(120),
 vrating number(2),
 vtechrate number(2),
 vuscdecl varchar2(240),
 vcurrent char(1),
 vshow char(1),
 vsubscribed char(1),
 vuntil date,
 vusername varchar2(80),
 vpassword varchar2(30),
 vidtimg number(2),
 vidtvid number(2),
 vcomexcl varchar2(240),
 vmdirectory varchar2(240),
 vmdiruse char(1),
 vmdirpages number(3),
 vmpage varchar2(240),
 vmpaguse char(1),
 vmbio varchar2(240),
 vmbiouse char(1),
 vmvideos varchar2(240),
 vmviduse char(1),
 vvidpage varchar2(240),
 vviduse char(1),
 vimgpage varchar2(240),
 vimguse char(1),
 valtpage varchar2(240),
 valtuse char(1),
 vsrvimg varchar2(240),
 vsrvvid varchar2(240),
 vmultimg char(1),
 vmultvid char(1),
 vnotes varchar2(240),
 vadded date,
 vamended date
);

Schema Reference: Vendor

106

Vendor: Defined Values

Table 17.1. vcurrent: vendor existance status: defined values

vcurrent

Y Yes - still an active site

N No - no longer trading at that web address

Table 17.2. vshow: vendor index inclusion status: defined values

vshow

Note

This option only really affects vendormode and vendor-based lists of models; if you don't
use vendor mode, it's not likely to be relevant.

Y Yes - show in indices

N No - hide from indices

Table 17.3. vmdiruse et al: vendor URL auto-usuability status: defined values

vmdiruse et al

fieldname page purpose possible values

vmdiruse Model Directory

vmpaguse Model Page

vmbiouse Model Biography

vmviduse Model's Videos
Page

vviduse Video Set Page

vimguse Image Set Page

valtuse Alternate Image Set
Page

Y link is (auto)usable

N link is not (auto)usable

S
link usable only
with session key

107

Chapter 18. Schema Reference: Conn
Conn: Schema SQL

create table conn
(centryno number(9) primary key,
 cgroup number(6),
 corder number(3),
 cflag char(1),
 cstatus char(1),
 cmodelno number(6) references models,
 csetno number(9) references sets,
 cphotog varchar2(6) references photographer,
 ctype varchar2(20) not null,
 cdesc varchar2(80),
 ccomments varchar2(240),
 cpath varchar2(160)
 cadded date,
 camended date
);

Conn: Defined Values
Warning

Conn (connections) is a recent addition and not all parts of the toolchain are in place yet. As
the management tools are added, it is expected that at least the legal values for fields will
change and be expanded.

Table 18.1. cflag: connection type: defined values

cflag

A Ad-Hoc - A casual index of some random theme

G Gallery - A slightly more focused collection with a specific concept behind it.

Table 18.2. cstatus: connection entry status: defined values

cstatus

M Manually Added

T Imported from a Tag set

108

Chapter 19. Schema Reference:
Keyword
Keyword: Schema SQL

create table keyword
(kentryno number(9) primary key,
 kflag char(1),
 kword varchar(30) not null,
 kexclusions varchar(120),
 kiloc varchar(20),
 kiscore number(1),
 kicat char(1),
 kicscore number(1),
 kidet varchar(40),
 kidscore number(1),
 kiattr varchar(30),
 kiascore number(1),
 kiother varchar(40),
 kioscore number(1),
 knotes varchar(80),
 kadded date,
 kamended date
);

Keyword: Defined Values

Table 19.1. kflag: active entry status: defined values

kflag

A Applies to All Added

N Not Active (Ignore)

109

Index
A
addheadercss, 59
addkeyicons, 64

Using ..., 36
addlinks, 67
addratings, 65
add_auth, 43
alsofeaturing, 55
assoc

astatus values, 92
Field Listing, 92
making connections, 30

astatus, 92
auth_error, 41
auth_get_attr, 46
auth_user, 42

C
cflag, 107
checkexclude, 56
checkindex, 57
check_auth, 40
Configuration

Reading The..., 4
Configuration Values

Getting..., 5
conf_get_attr, 5, 45
conn

cflag values, 107
cstatus values, 107
Field Listing, 107

Connection
Database, Initialising..., 4

cstatus, 107

D
Data Architecture, 30
Database

Environment Variables, 5
Fetching Records..., 7
Initialising Connection To..., 4

dberror, 47
describeher, 62

WacsUI: Introducing, 35
divideup, 54
download

dsetflag values, 100
dstatus values, 99
dtype values, 100
Field Listing, 99

dsetflag, 100
dstatus, 99
dtype, 100

F
findmodel, 77
find_config_location, 44

G
geticonlist, 52
gettoday, 48
gettypecolour, 53
getvaluename, 51

I
iactive, 93
iconlink, 66
icons

adding set ..., 27
idmap

Field Listing, 93
iactive values, 93
isite recommended values, 93
istatus values, 93

isite, 93
istatus, 93

K
keyword

Field Listing, 108
kflag values, 108

kflag, 108
kwscore_get, 80
kwscore_process, 79
kwscore_reset, 78

M
makedbsafe, 58
masthead, 74
mbuild, 98
mcstatus, 97
menu_get_body, 71
menu_get_default, 69
menu_get_entry, 72
menu_get_title, 70
mfetish, 97
mflag, 97
mheight, 98
mlesbian, 97
mmast, 97
modelheads, 76
models

activities values, 97

Index

110

connection to sets, 30
Field Listing, 95
mbuild values, 98
mcstatus values, 97
mflag values, 97
mpussy values, 96
mrace values, 97
mrating values, 96
mstatus values, 96
vital statistics fields, 98

Modules
Importing WACS API, 3

mother, 97
mpussy, 96
mrace, 97
mrating, 96
msolo, 97
mstatus, 96
mstraight, 97
mtoys, 97
mvideos, 97
mvitbust, 98
mvithips, 98
mvitwaist, 98
mweight, 98
MySimple (Sample Program)

Perl Version Source Code, 11
Php Version Source Code, 10
Sample Run Output, 12

MySimple2 (Sample Program)
Sample Run Output, 14

MySimple3 (Sample Program)
Sample Run Output, 17

MySimple4 (Sample Program)
Sample Run Output, 18

MySimple5 (Sample Program)
Sample Run Output, 21

P
pdigital, 103
pfetish, 103
pfilm, 103
pgender, 101
pgroup, 103
phardness, 102
phdvideo, 103
photographer

activities covered values, 103
Field Listing, 101
pgender values, 101
phardness values, 102
prating values, 102
pregion values, 102

technologies used values, 103
plesbian, 103
prating, 102
pregion, 102
psolo, 103
pstraight, 103
ptoys, 103
pvideo, 103

R
readable

making Camel-Style ..., 28
read_conf, 39
read_menu, 68
Relational Database Model, 30
removeconflicts, 82
removedups, 81

S
sauto, 88
scatflag, 90
serrors, 90
SetDisp (Sample Program)

Sample Run Output, 27
setdisp program, 24
SetDisp2 (Sample Program)

Sample Run Output, 28
SetDisp3 (Sample Program)

Sample Run Output, 29
SetDisp4 (Sample Program)

Sample Run Output, 33
setgroupperms, 60
sets

connecting to models, 30
Field Listing, 87
introduction to displaying, 24
sauto values, 88
scatflag values, 90
serrors values, 90
sformat values, 89
sidlogo values, 90
slocation recommended values, 91
srating values, 89
sstatus values, 88
stechqual values, 89
stype values, 88
suscattr values, 91
svariety values, 89

sformat, 89
sidlogo, 90
slocation, 91
SQL

Simple Example, 6

Index

111

srating, 89
sstatus, 88
stechqual, 89
Structure of a WACS app, 3
stype, 88
suscattr, 91
svariety, 89

T
tag

Field Listing, 104
tflag values, 104
tstatus values, 104

text
Camel-Style, 28

tflag, 104
timecomps, 49
tstatus, 104

U
Using relationships, 30

V
vcurrent, 106
vendlink, 50
vendor

Field Listing, 105
vcurrent values, 106
vmdiruse values, 106
vshow values, 106

vmdiruse, 106
vshow, 106

W
WACS Core

addheadercss, 59
add_auth, 43
alsofeaturing, 55
auth_error, 41
auth_get_attr, 46
auth_user, 42
checkexclude, 56
checkindex, 57
check_auth, 40
conf_get_attr, 45
dberror, 47
divideup, 54
find_config_location, 44
geticonlist, 52
gettoday, 48
gettypecolour, 53
getvaluename, 51
makedbsafe, 58

read_conf, 39
setgroupperms, 60
timecomps, 49
vendlink, 50

WACS Std
findmodel, 77
kwscore_get, 80
kwscore_process, 79
kwscore_reset, 78
masthead, 74
modelheads, 76
removeconflicts, 82
removedups, 81

WACS UI
addkeyicons, 64
addlinks, 67
addratings, 65
describeher, 62
iconlink, 66
menu_get_body, 71
menu_get_default, 69
menu_get_entry, 72
menu_get_title, 70
read_menu, 68
whatshedoes, 63

WacsUI
addkeyicons, 36
describeher, 35
Including Support For..., 35
Introduction To..., 35

whatshedoes, 63

