Wacs Programming Guide

Sixth Edition
for WACS 0.8.5

B "Beaky" King
Published 15th March 2010

Wacs Programming Guide
by B "Beaky" King

for WACS0.8.5

Published 15th March 2010
Copyright © 2006, 2007, 2008, 2009, 2010 B King

Abstract

WACS is atool for building Adult Web Sites; it is equally suitable for managing a private collection or building
a commercial web site. It has many best of breed features including dynamic filtering, model catalogs, automatic
download and powerful search engine. It comeswith apowerful API (application programming interface) implemented
in both Perl and PHP5 languages to allow web devel opers to leverage it's facilities from their own programs.

This book describes the application programming interface provided by WACS, and how to utilise it from perl and
Php languages. It provides an extensive introductory tutorial with a large number of worked example programs as
well as acomplete API reference manual. Additionally it provides a schema reference for the WACS database tables
as understanding the fields available to you is central to writing programs that utilitise it. The intended audience is
web developers and WACS site managers who wish to tailor an existing WACS installation to meet their precise
requirements; people merely wishing to use or manage an existing WACS installation may well find the default
configurations provided suffice.

The WACS source code and other documentation and support tools can all be found at the WACS website at
Sourceforge [http://wacsip.sourceforge.net/] and on the WACS page at Launchpad.net [https://launchpad.net/wacs/
]. The WACS demonstration site can be found at PinkMetallic.com [http://www.pinkmetallic.com/] - the site will
initially be free but a charge maybe applied later to help fund additiona content. Commercial add-ons and support
options can be purchased from Bevtec Communications Ltd, see their website at Bevtec Communications [http://
www.bevteccom.co.uk/].

Thiswork is licensed under the Creative Commons Attribution License. To view a copy of this license, visit http://creativecommons.org/licenses/
by/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://wacsip.sourceforge.net/
http://wacsip.sourceforge.net/
https://launchpad.net/wacs/
https://launchpad.net/wacs/
http://www.pinkmetallic.com/
http://www.pinkmetallic.com/
http://www.bevteccom.co.uk/
http://www.bevteccom.co.uk/
http://www.bevteccom.co.uk/
http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

Table of Contents

[. WACS APl Programming TULOM@c.uuuiiieiieiiii ettt et e e e e eeees 1
O [gL oo (0o 1o o RSP PP PP PPPPTI 2
OVEIVIBIV .ttt ettt e et e et e e et et e e et et e e e e nba s 2
ADOUL ThIS BOOK ...t 2

ADOUL The EXAMPIES ...t 2

2. BaSICS. GELtING SEAMEH ...cceitiieeeii et 3
OULIINE e e ettt e ettt e ettt e et e bt e e e et e eeee 3

A FIrst WACS PrOQram ...ttt ettt e et e e e e e enans 3
MOTUIES: TMPOITING ..eevvtee it 3
Configuration AN SECUNTYccovvuiieiiiiii e 4

Initialising Database CONNECLIONcceuuiiiiiiiiiieie e 4

Fetching SOME RECOITSc.vuiieiiiii e 6

Showing Te RESUITSccceviiiiiii e 7

FiniShing OFf ..o e e 9

PULtiNg [t Al TOGEINEY ... e 9
RUNNING MYSIMPIE ..o e 12

Reviewing The First Programcoeuuiiiiiiiieeei e 12

3. Using More Database FIElAScooeiuieiiiii e 13
AdAiNg MOGE TCONS ... 13
More Model INFOrMELIONiiiieieiee e 14
USING HTML taDIESunie e 15

Adding The Model DELaIScouuiiiiiiiiec e 17

Adding OthEr 1CONSuiiiiii e 19
IMProving Error REPOMINGccevuieieiiiieiiii ettt e e e e e e 21

4. Set Display ROULINESueiiiitiee ettt ettt ettt e et e e e e e e eena e eees 24
ADOUL SEL DISPIAY .ot 24

SetS: The BaSIC BONEScoovieiiiii e 24

AdAiNG TCONS ...t 27

Making The Text More Readableooooiiiiiiiiiii e, 28
Connecting SetS AN MOTEIScoouuiiiiii e 30
Understanding The Data ArchiteCtureccouuieiiiiiiieeiiiieeeeei e 30

Using Relationships With ASSOCcoevuiiiiiiiiicciii e 30

AN EXBMPIE USING ASSOC ...ttt ettt e et eeeene e eeens 31

5. The User Interface TOOIKITuiiiiiieee e 35
INErodUCING WECSUI ... et et 35
INncluding WacsSUI SUPPOITcoveriiieiiii e e 35

WaCSUL: DESCITDEHES ... 35

The whatshedoes FUNCLIONcoouuiiiiiii e 36

The addkeyicons FUNCLIONcooiiiiiiiii e 37

iconlink: WacsUI's Most Important FUNCLIONoooiiiiieiiiiecii e 37
WaCSUL: Other FUNCLIONSiiiiiiiciiii e 38
CONCIUSIONS ...ttt et e et e e e e e e b e e eennns 38

6. WACSPHP: The SKINScouiiiiiii e 39
INtroduction TO PHP SKINSuuiiiiiiiiiciii e e 39
WaCs-PHP: The SIMPIe SKiNc..uiiii e 39

Styling WaCS-PHP SKINSccouuiiiiiiiiieiiiii et 40

WACS 8N WED 2.0 ...ttt et e et e e e e e e e 40

[1. WACS APl Programming REFEIENCEcoouuiiiiiiii e 41
7. WACS APL: COre MOUUIE ..ot 42
Core MOTUIE: SUMMIBIYceeiieieii ettt e e e e 42

Core Module: REFEIENCEcoeiiieeeee e e e 42

Wacs Programming Guide

8. WACS API: User Interface MOAUIEeiiiiiii e 65
User Interface Module: SUMMEIYcouuniiiiiiiiii e e e e e e e e 65

User Interface Module: REFEIENCEiiiiiiii e 65

9. WACS API: Standard Components MOodUIEcouuiiiiiiiiiieciieee e 80
Standard Components Modul€: SUMMAIYcccouiiiiiiiiiiieiie e e e 80
Standard Components Module: REFErENCEoovvviiiiiiiiiii e 80

10. WACS API: Identification MOQUIEoiieeiieiiiiii e e e e e e e 96
Identification Modul€: SUMMANYcoouiiiiiiiiii e e e e 96

[11. WACS Database SChEMAvuviiii ettt s e e e e e et e e e e e aaeeaanes 97
11, SChema REFErENCE: SELSuuiiii i e e e e 98
SEtS: SChEMA SQL ...iiiiiii e e 98

SELS: DEfINEA VAIUESovviiii e e e e e 99

12. SChemMa REFEIENCE: ASSOC ...vuuiiiiiciiii e et et e e et e e e e e e e et e e et eeanaeeees 105
ASSOC: SChEMA SOL ..vuiiiiiiiii e e e e e e e e e a e 105
ASSOC: DEFfINEA VAIUESciviicie e 105

13. Schema ReferenCe: 1dmMap ... ccuu i e 106
[dMaP: SChEMa SQLoviniiie e e e e e e 106
[dMap: DEfINEd VAIUESceeiii e 106

14. Schema Reference: MOGEISooviiiii i 108
Models: SCheMa SQLiviiiii e e e 108
Models: DEfINED VAIUESccvniii e 109

15. Schema Reference; DOWNIOAdccivuiiiiiii e e e 113
Download: SChemMa SQLuiiiiiii e e e 113
Download: DEfiNEA VAlUEScccuuiiiiicii e 113

16. Schema Reference: Photographerovviiiiiii e 115
Photographer: SChema SQLuuiiiiiiii e 115
Photographer: Defined ValUEScouuiiiiiiiiii e 115

17. SChemMa REFEIENCE: TAO . .vvvuiiiii e e e e e e e e e e et e et e e aaaas 118
Tag: SCheMa SQL ...cvvniii e e e 118

Tag: DEfINEA VAIUEScouiiiici e e e e 118

18. Schema RefErenCe: VENUOTcouiiiii i e e e e 119
Vendor: SChemMa SOLciii i 119
Vendor: DEfiNed VAIUESc.uiiiiiiiii e e e e e 120

19. Schema ReFErenCe: COMNivuiiiii e e e e e e aaaas 121
ConN; SChEMA SQL ..ivniiii e e e e e e e e e e e 121
Conn; DEfINEA VAIUBSciii it e e e e e e aaas 121

20. Schema Reference: KEYWOIdc.uiiiiiiiiiiiiiii e e e e e e e aaes 122
Keyword: SCheMa SQLciviiiiiiie e e e e e e e e e e e e aen 122
Keyword: DEfined VAUESc..uiiiiiiii e e 122

21, SChema REfEIENCE USEriiiiieiii e e e e e e e 123
USEr: SChEmMa SQL ...oiviiiii et e e e e e 123

USEr: DEfINEA VAIUEScvvciii et e e e e 124

22. Schema Reference: Atrib ... 125
ALtrib: SChemMa SQL ...vvnii e 125
ALLrib: DEfINEA VAIUES .. .coviii e e e e 125

23. Schema ReEfEreNCE NOLESiiei e e e et e e e e eeas 126
NOES: SChEMA SOL ..uuiiiiii e e e e e e e e e e e eaaas 126
NOES: DEfINEA VAIUESceiiicii e e 126
o P 127

List of Tables

6.1. SIMple SKiN: COMPONENTSc.uuuieiii ettt ettt e e e et e e e e e e ena s 39
2. The K&Y WACS MOUUIES ... oottt et e e 41
7.1. Function SUmMmary: Core MOGUIEoeiiiiiiieiii et 42
8.1. Function Summary: User Interface MOodUIEcoiviiiiiiiiii e 65
9.1. Function Summary: Standard Components Moduleviiiiiiiiieiiiiec e 80
10.1. Function Summary: ldentification MOdUIccoouiiiiiiiiii e 96
11.1. stype: Type of Set: defined VAIUBSooovuiiiiiii e 99
11.2. sstatus: Status of Set: defined VAIUESiiiiiiiiiiii e 100
11.3. sauto: Automatic Update of Set Allowed?: defined valuesoovveiiiiiiiiiiiiiiicciieeee 100
11.4. srating: Overall Rating For The Set: defined ValUEScocoiviiiiiiiii e 100
11.5. stechqual: Technical Quality Rating For The Set: defined valuesoooveveiiiiiiiiiinees 100
11.6. svariety: Unusualness Rating For The Set: defined valuesccoovieiiiiiiiiiiiiieciieees 101
11.7. sformat: Format of the File(s) In The Set: defined ValUEScooevvviiiiiiiiiiii 101
11.8. sidlogo: Presence of Burnt-in Logo: defined Valuesccouuiiiiiiiiiiiiiiiiieccii e 101
11.9. sinter: Progressive or Interlaced Video SITUCIUIEuiiiiiiiiieiiiii e 101
11.10. serrors: Presence of Known Errors: defined ValueSc.uuiiiiiiiiiiiiiiciei e 102
11.11. scatflag: Generalised type of the set: defined ValUESviiiiiiiiiii e, 102
11.12. slocation: generalised description of locations: recommended Valuesccceevveeennnnnn. 102
11.13. sattire: generalised description of model's clothing: recommended values 103
11.14. suscattr: how to generate the 18 USC 2257 declaration: defined valuesccceuuneee. 104
12.1. astatus: association status: defined VAIUBSiiiiiiiiiiiiiiii e 105
13.1. istatus: idmap status: defined VAIUESiiiiiiiieieii e 106
13.2. iactive: model activity status as this identity: defined valuesccccoiveviiiiiiiiiiiin e, 106
13.3. isite: Some recommended site abbrievations; recommended valuescccooeeviviiieeiinnnnn. 107
14.1. mstatus: model record status: defined VaIUEScuuuiiiiiiiiiiiiii e 109
14.2. mrating: model rating: defined VBIUEScoouuuiiiiiiii e 109
14.3. mpussy: model's normal pubic hair style: defined valuesovviiiiiiiiiiiiiic e, 110
14.4. mflag: special marking flag for models: defined valuescooveiiiiiiiiiiin e, 110
14.5. model activites flags: defined VAIUBSoiiiiiiiii i 110
14.6. mestatus: accuracy of home country field: defined values.............ccoooveiiiiiiiiiins 111
14.7. mrace: race of the model: defined VAIUESoviiiiiiiiii e 111
14.8. mbuild: body type of the model: defined ValUESuiiiiiiiiiiii e 111
14.9. vital StatiStiCS: MEBNINGS ...eeveneeeeii ettt ettt e et e e e e e enaas 111
15.1. dstatus: download status: defined VAIUESooieiiiiiiiiii e 113
15.2. dtype: download set type: defined VAIUESccooviiiiiiii e 114
15.3. dsetflag: Suggested value for scatflag based on parsing resultcooevevviiieiiiiinneieninnn. 114
16.1. pgender: gender of the photographer: defined valuesooviiiiiiiiiiiiiic e 115
16.2. pregion: geographical location of the photographer: defined valuescc.ccoiviiiiiennin. 116
16.3. prating: overal rating of photographer: defined valuescooviiiiiiiiiiiii e, 116
16.4. phardness: rating of how explicit this photographer can be: defined values...............ccco.oece. 116
16.5. photographer activites covered flags: defined ValUesccoiviiiiiiiiiiiii 117
16.6. photographer technologies used flags: defined valuesc.ooiiiiiiiiiiiiiiii e, 117
17.1. tstatus: tag entry status: defined VAIUESiiiiiii i 118
17.2. tflag: tag content type status; defined VAlUBSiiiiiiiiiiiiii e 118
18.1. veurrent: vendor existance status: defined VAIUESoviiiiiiiiiiiiiicce e 120
18.2. vshow: vendor index inclusion status: defined ValueSooveviiiiiiiiiii i 120
18.3. vmdiruse et a: vendor URL auto-usuability status: defined valuesccoeviieiiiiinnenes 120
19.1. cflag: connection type: defined VAlUESoiiiiiiiiiii e 121
19.2. cstatus: connection entry status: defined ValUESccouiiiiiiiiiiiiiii e 121
20.1. kflag: active entry status: defined VAIUESooiiiiiiiiiiiii e 122
21.1. ustatus: User Account Status: defined ValUESiiiiiiiiiiiiii e 124

Wacs Programming Guide

21.2. utype: User Type: defined values

21.3. uclass: User Class: defiNEd VAIUESouuiiiiiiei e e e e e e e

23.1. ntype: notes type: defined values

Vi

List of Examples

2.1,
2.2,
2.3.
24,
2.5.
2.6.
2.7.
3.1
3.2
3.3.
3.4.
3.5.
3.6.
4.1.
4.2,
4.3.
4.4,
4.5.
4.6.
5.1
5.2
5.3.
5.4.
5.5.

WACS MOQUIE TMPOIT ...ttt ettt et e e e e e eaanns 3
CONFIG AN SECUNLY ...ttt ettt ettt e et et et e e e et e e e naanas 4
Database Connection INitialiSatioNncoouuuuiiiiiiiiei e e 5
DalANESE QUETY ...ttt ettt 6
OULPULING THE LISt ...ttt ettt e et e e e e e e 8
Php: Complete SIMPIE PrOgramccoeuuueiiii ettt et e e e e e e e e e eeens 10
Perl: Complete SIMPle Programooceeeiii e 11
Modified Output Loop With 1CON COUEccoiiiiiieiiiii e 13
Modified SQL command for more Model INfOoviiiiiiiii e 14
New version of the [00p USING tADIEScoiiii e 16
Adding Model INfOrMELTONcoeeiiieie e e 18
AddiNg A REING TCOMN ...ttt et e et e et eeeeraeeees 20
Calling dberror for Detter error rePOItiNGccuuueiereie et 22
The BasiC SatDiSP PrOGIaIMccouuuieiiiiie ettt ettt e e e et e et e e e b 25
AdAING A SEL TCON ettt 27
Making Camel-Style Text Readableooiiiiiiiiii e 29
MOIfied 1CON CEIl ... e e e 31
OEtMOEl SUDIOULINGE ...ttt ettt e e e e 32
Calling The getmodel FUNCLIONc..uuiiiiiii e 33
WECSUI INITTAIISALION ...oeeeiceeie ettt e s 35
USiNg WacsUI: deSCIIDENENeeieie e 36
Using WacsUI: WhaShEAOBSuuiiiiiiiic e 37
USING AQAKEYICONS ...ttt ettt e e e e e e e e eeanns 37
Using the iconlink fUNCHIONcoouueiiiii e 38

Vii

Part I. WACS API Programming Tutorial

This part of the WACS Programming Guide is designed to introduce you to programming using the WACS API -
examples will be given in both Perl and PHP5 dialects so you can choose to work in either language.

Chapter 1, Introduction

Chapter 2, Basics. Getting Sarted
Chapter 3, Using More Database Fields
Chapter 4, Set Display Routines
Chapter 5, The User Interface Toolkit
Chapter 6, Wacs-PHP: The ins

Chapter 1. Introduction

Overview

Welcome to WACS, Web-based Adult Content Server, a free software package for the management of
material of an"Adult Nature" (or basically whatever euphermism for porn you prefer). It isweb-based and
can be used for the management of an existing collection, as a download manager, or as aback-end system
for running acommercial adult web site. It isdramatically different from most other image gallery systems
in that it understands photo sets and video clips as basic concepts, instead of single photographs. It also
includes far more specialised tagging, source, relationship and attribute marking concepts than other more
generalised systems. WACS ahilitiesin the areas of searching and dynamic filtering are really industry-
leading in their power and flexibility.

About This Book

This electronic book, the WACS Programming Guide, is designed to act both as an introduction to
programming with the WACS API in either perl or PHP, and as a reference volume for both the AP
itself and the database schema. This book assumes you already have a basic knowledge of programming
in your choosen language (PHP5 or perl5) and have some understanding of databases and in particular
SQL (Structure Query Language). Some familiarity with WACS at a user level would also be a distinct
advantage, and I'd strongly recommend working through the companion user guide first - who knows it
might give you some ideas about neat extra features you can add to your own site. All documentation for
WACS is available both within the distribution and from the WACS Web Site at Sourceforge.net [http://
wacsi p.sourceforge.net/].

Itisimportant to stress that ALL of the collection management tools are implemented in Perl and the PHP
interfaceis an optional addition to, not an alternative to, the core Wacs system which is perl based. Given
the relative youth of the WACS system, php5 has been selected for the implementation to save future
porting effortsasit is expected that php5 or later will be the minimum common standard by the time Wacs
reaches 1.0. Thereis no intention to support older dialects of php at this point.

Asthe WACS software package is Open Source, we're always looking for contributions; if you create a
site design (or prototype for one) which you don't end up using, maybe you would consider donating it
to the repository of sample WACS Skins. We can aways substitute our own artwork into already written
web application code.

About The Examples

For copyright/licensing reasons, the example images feature sets from photoshoots by the main devel oper
of WACS (Beaky) and afriend of his. These setsareavailablefor download from the WA CS demonstration
site at PinkMetallic.com [http://www.pinkmetallic.com/] - CAUTION: contains adult material! Accessto
this site is currently free but we may have to levy a small charge in the future if refferal and donations
don't reach the hoped-for amount.

http://wacsip.sourceforge.net/
http://wacsip.sourceforge.net/
http://wacsip.sourceforge.net/
http://www.pinkmetallic.com/
http://www.pinkmetallic.com/

Chapter 2. Basics: Getting Started

Outline

In this chapter we're going to talk about the basic first steps in making use of the WACS API from your
own programs. We're going to assume that you've got aWACS server you can use up and running; that you
know where things are on it and that you have appropriate write access to the web document tree (if you're
working in PHP) or the cgi-bin directory (if you're working in Perl). Hopefully you'll have both some
models and afew image sets known in the WACS system to work with. For these first code examples, you
could merely load the sample model profiles we've provided in the sanpl es directory of the WACS
distribution.

While the finished code of the sample programs featured here is available in the samples directory of the
WACS Core distribution (for the Perl verion) or the WACS-php distribution (for the PHP5 version), you
may wish to type it in as you go aong as an aid to learning how to use the interface. If you do, we'd
recommend calling this file nysi npl e for perl, or mysi npl e. php for PHP. For consistency, we're
going to put the PHP dialect first and then the Perl dialect in each of the examples.

The basic structure of your first WACS application will consist of five steps; these are:

1. import the WACS APl modules

2. read configuration and check access rights

3. initiaise the database connection

4. run an appropriate database query

5. retrieve records and display them

A First WACS Program

Modules: Importing

The very first step isto import the WACS API modules into your program file along with those standard
modul es needed to access the database. These files should be in the right location aready and should just
be found without any additional specification of where they are.

Example2.1. WACS Module Import
requi re_once "wacs. php";

requi re_once "DB. php";

$wacs = new WAcs;

The same code segment implemented in perl looks like:

Basics: Getting Started

use WAcs;
use DBI;

Note

The PHP interface requires an Object Handle to use when accessing the WACS module
which we're smply caling $wacs. Perl doesn't need such a construct - there is simply the
oneinstance.

Configuration And Security

The second step isto read the standard WACS configuration file to find out where everything is, and then
check that this user is allowed to access the WACS system. This is a two step process, and the reading
of the configuration file must be done first; otherwise WACS doesn't know where to look for the security
filesit needsto determine whether this user should be given access or not.

Example 2.2. Config and Security

/1 read the Wacs configuration files
$wacs->read_conf ();

/1 check the auth(entication and authorisation) of this user
$wacs- >check_auth($_SERVER[' REMOTE_ADDR], 1);

and here isthe same thing again in the perl dialect:
read the Wacs configuration files
read_conf;

check the auth(entication and authorisation) of this user
check_aut h($ENV{"REMOTE_ADDR'}, 1);

Initialising Database Connection

Thethird stepistoinitialisethe database connection. Since some databasesrequire an environment variable
to determine where their configuration files have been stored, this needs to be set first. Wacs provides
for this and this code will create that environment variable, if needed, and then proceed to establish the
database connection itself.

Basics: Getting Started

Example 2.3. Database Connection Initialisation

/1 database initialisation

/1 - establish environment variable

$dbi env = $wacs->conf _get attr("dat abase", "dbi envvar");
if(! enpty($dbienv))

{

put env($dbi env. "=". $wacs- >conf _get attr("dat abase", "dbi envval ue"));
}
/1 - connect to the database
$dbhandl e= DB: : connect ($wacs->conf _get attr("database", "phpdbconnect”));
if(DB::iserror($dbhandle))
{

die("Can't connect to database\nReason:". $dbhandl e- >get Message. "\ n");

}
$dbhandl e- >set Fet chMode(DB_FETCHMODE ORDERED) ;

and here's how we do it in perl:

database initialisation

- establish environnent variable

$dbi env = conf _get _attr("database", "dbi envvar");
if($dbienv ne "")

{
}

- connect to the database
$dbhandl e=DBI - >connect (conf_get _attr("database", "dbi connect"),
conf _get attr("database", "dbuser"),
conf _get attr("database", "dbpass")) ||
die("Can't connect to database\nReason given was $DBl::errstr\n");

$ENV{ $dbi env} = conf _get attr("database", "dbi envval ue");

OK, let'sjust study this code for a moment. It first calls the WACS API function conf_get_attr with the
section parameter of database as it wants database related configuration information, and an argument
of dbienwvar. The WACS API function conf_get_attr is short for configuration get attribute and returns
the value of the configuration file parameter of that name or it's default value. The dbi envvar means
databaseinterface environment variable. A typical valuefor thismight be something like ORACLE_HOVE
which is the environment variable that Oracle 10g and 11i requires to be set in order to find it's current
configuration.

The next line of the code checks to see if we got back an actual variable name (eg ORACLE_HQOVE) or an
empty string (ie nothing). If we were given a valid variable name, then we're going to need to set it the
value it should be, which again we can get from the configuration file, this time called dbi envval ue
which isshort for database interface environment value (as distinct from the variable name we just |ooked
up). A likely valuefor thismight be/ usr /| ocal / or acl e. Obvioudly if we're given no variable name
to set, there's no point looking for avaluefor it! Conversely we are assuming that having bothered to name
the variable in the configuration file, also put in avalid value for it - this code could break if the variable
name is specified but not it's value.

The second section of these code segmentsis to do with the establishment of a connection to the database
and is alittle different between the two versions. Both systems use a handle for the database connection,

Basics: Getting Started

which we call $dbhandl e - imaginative name huh? In both cases, the respective database APIs provide
a connect function which takes an argument of how to connect to the database. The Php version takes
asingle argument, which is stored in our configuration files as phpdbconnect and includes the whole
username, password and database specification in a single lump. The Perl version asks for three: the
database specification, the username and finally the password. The configuration file knows these as
dbi connect , dbuser and dbpass respectively.

Thefinal bit copeswith putting out some kind of error message, at least showing the point of failure, if we
are unable to establish a connection to the database. The methods are very dlightly different, but the effect
is very much the same between the two versions. We then just tell the PHP DB interface how we wish it
to organise the returned data; the perl DBI default is pre-determined and is what we want.

Tip

Note that you might wish to have completed the output of the HTML header section and
started the body by this point so that should the database connection fail, the error message
will bevisible.

Fetching Some Records

The next step in the processis to use the database connection we've established to actually make arequest
of the database. For now don't worry about what that request is or how we've written it - we'll come back
to that topic in detail later in this chapter. Look at the mechanics of how we're issuing the request and
getting back the results. What we're going to ask the database for is alist of those girls who are marked
as Favourite Solo models. We chose this because both the models in our current samples directory are
marked as this and so even if you only have our sample records |oaded, you should find some matches.

Example 2.4. Database Query

/1 do db sel ect

/1 0 1 2 3

$query = "sel ect mane, nodel no, nbi gi rage, m nage from".
$wacs->conf _get attr("tabl es", "nodel s").
" where nflag = 'S order by mane";

$cursor = $dbhandl e- >query(S$query);

The method is alittle different in perl in that it is seperated into two steps; as aresult it looks like this...

do db sel ect

0 1 2 3

$query = "sel ect mane, nodel no, nbigi nage, minage from".
conf _get _attr("tabl es", "nodel s").
' where nflag = 'S order by mane";

$cursor = $dbhandl e- >prepare($query);

$cur sor - >execut e;

Note

The query structure is very similar between Php and perl apart for the two step process of
validating and then seperately executing the query in perl. Thisis mostly down to different

Basics: Getting Started

traditions that exist for database accesses in each language. The net result is similar in
technical terms and identical in output terms

In both cases we're putting together an SQL query that reads:

sel ect mmane, nodel no, mnbi gi mage, m mage
from nodel s

where nflag = 'S

order by mmane

This query asks the database to fetch the four named items: ane, nodel no, nbi gi mage, and
m mage from the database table called nodel s wherethefield nf | ag hasavalue of the capital letter S
and to sort theresultsit returnsto us by thevaluein thefield called rmane. It may not surpriseyouto learn
that mane isthe model'sname, nodel no isour reference number for her, mbi gi mage isthe(location
of the) large size headshot of her and mi mage isthe (location of the) smaller size headshot of her.

You may have noticed that the only part of this that wasn't copied verbatim from the code isthe f r om
nodel s bit and that there we've used the WACS API call conf_get_attr to get the actua name of
the database table concerned from the main WACS configuration file. This is actually important and
it's strongly recommended that you do use this form when creating SQL queries. If you really insist on
knowing why, take alook at the section on the tables part of the wacs.cfg configuration filein the WACS
configuration guide.

Once we've created the SQL query, we feed it to the database routines. The first step is to pass in the
SQL query and have the database perform that search on the database. Once the query has been executed,
we want to pull back the matching records (or r ows in database parlence) for each model. In both Php
and Perl we're calling a routine that returns to us a single row from the database (a single model's record
in this case) each time it's called. When we run out of records, a null return is given and our while loop
ends. In Php, the function to do thisis called using f et chRow which returns the next row as an array of
values, which we assign into the variable $r esul t s eachtime. In Perl, the function we're using is called
f et chr ow_arr ay because perl offers us a choice in the type of data we are returned and in this case
we want anumerically indexed array.

Note

There are other approaches to getting back the data, including having it returned in one
big lump (such as with the Php call get Al | ()) - this has been avoided as some WACS
installations might have tens of thousands of matching records for some queries.

Showing The Results

The final step is to actually generate some output from the data we've fetched from the database. We're
going to do this asan unordered listin HTML, so we're going to be adding alittle formating to the output
as we retrieve each record.

Basics: Getting Started

Example 2.5. Outputing TheList

print "\n";
while($results = $cursor->fetchRow())

{
print "";
print "conf_get _attr("server","cgiurl");
print "wacsnpthunbs/". $resul ts[1]."\">";
print $results[0]."\n";
}

print "\n";

and here's the perl version...

print "\n";
while(@esults = $cursor->fetchrow array)

{
print "";
print "<a href=\"".conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $resul ts[1]."\">";
print $results[0]."\n";
}

print "\n";

We start off by printing out the HTML instruction to start an unordered list () in aline on it's own.
We then start a while loop which goes through each entry until it's done them all. Both versions use the
database cursor object ($cur sor) tofetch the next record (akarow) from the database using thefetchRow
or fetchrow_array method and assigning it into the array $r esul t s (or in perl @ esul t s). The act
of the assignment fails when there are no more records to fetch and the while loop will terminate. The
construct here is based upon the fact that both languages have seperate operators for assignment (=) and
comparison (== and eq) and so the code is unambiguous (at least to the php and perl interpretersitis!).

Onceinsidethe body of the whileloop we print out the start of list entry tag (<I i >) and start in on making
use of the data. In the quest to make this example alittle bit more satisfying, we've tried to make sure this
application does something vaguely useful. A simplelist of namesisall well and good, but we wanted it to
actually do something! So what we've done hereisto create alink around each models name that pointsto
her model page as displayed by the standard WA CS tools. Theraw HTML to achieve thiswould look like:

Sar ah</ a>

So we'releft with aslight problem herein that we don't know in advance (trust me on this) what the WACS
server is called, we don't know what the models are called and we don't know what their numbers are. We
have no ideaif we have amodel number 123 or not and whether she's called Sarah; but the WACS system
should be abletofill in al the blanks for us.

The first part of the code merely prints out the start of the HTML <a hr ef =" > and then we ask the
WACS configuration system what it's externally visible URL for cgi-bin programs is. We do this using
the conf_get_attr call again, telling it we want an answer in the section server of the URL for cgi scripts
akacgi url . Onthe next line of the example we put the name of the WACS application we want to link
to, in this case wacsmpthumbs. Since the way we tell wacsmpthumbs what we want it to look up isto
add a slash and then the model number to the URL, we add aslash (/) on the end and then the number.

Basics: Getting Started

Tip

Y ou may have noticed that we added a comment on the line above the SQL select statement
with 0,1,2,3 with each number above the field name in the query. This was a shorthand to
ourselvesto remind uswhat theindex number inthearray isfor each of those databasefields.

Since the order of thefieldswe asked for wasmrmane, nodel no, nbi gi nage andthenm mage, the
resultsin the array will be the same - element O will be the mname, element 1 will be the model number,
and so on. In both cases we're dealing with a single-dimensional array. The first field we want to go into
the URL for wacsmodelthumbs is the model number, so that will be element 1 (not zero) therefore we
write $r esul t s[1] . We then finish off the URL reference by closing the quotes (*) and the > tag.

We then want to print the model's name which will be element O in our arrays, put out the closing anchor
tag (</e>) and then finish off the unordered line entry with the end line tag (). We then print out a
new line so the generated page is easier to read. The moving on to the next record will be done as a by-
product of the test for the next iteration around the while loop. Once we exit the loop, we finish off the
HTML unordered list.

Finishing Off

To just finaly finish it off, we need to add a few more pieces just to make it work. For the Php version,
we heed to declare it as being a php program with <?php at the very start of the file, with amatching ?>
at the very end. For perl, we need to declare it as aperl script with the very first line being just #! / usr /
bi n/ per| . Additionaly for perl, we need to output the mime content type declaration so that the web
browser knows what kind of object it's being passed - thisis done simply with:

print "Content-Type: text/htm\n";
print "\n";

Next we need a couple of lines of HTML preamble near the beginning (as mentioned before, just before
the database connection code so we could see any error message that appears):

<htm >

<head>

<title>WSinple: Index O Favourites</title>
</ head>

<body>

Similarly at the end, we just need to finish the page off with the html tail piece:

</ body>
</htm >

Putting It All Together

With all the components in place, let's review the new MySimple WACS program in it's entirety. We
include the modules, initialise the configuration system, check the authorisation, connect to the database,
draft the query, submit it and then loop through the results. Not really that complex now we know what
each part does. Anyway here's the finished code....

Basics: Getting Started

Example 2.6. Php: Complete Simple Program

<?php

/1 MySinmple - sanple WACS APl program (PHP5)

requi re_once "wacs. php";

requi re_once "DB. php";

$wacs = new VMACS;

/1 read the Wacs configuration files

$wacs- >read_conf ();

/1 check the auth(entication and authorisation) of this user
$wacs- >check_auth($_SERVER' REMOTE_ADDR], 1);

/1 start the HTML docunent

print "<htm >\n";

print "<head>\n";

print "<title>MSinple: Index O Favourites</title>\n";
print "</head>\n";

print "<body>\n";

/] database initialisation

/1 - establish environment variable

$dbi env = $wacs- >conf _get _attr("dat abase", "dbi envvar");
if(! enpty($dbienv))

{

put env($dbi env. "=". $wacs- >conf _get _attr("dat abase", "dbi envval ue"));
}
/1 - connect to the database
$dbhandl e= DB: : connect ($wacs->conf _get _attr("database", "phpdbconnect"));
i f(DB::iserror($dbhandl e))

{
die("Can't connect to database\nReason:". $dbhandl e- >get Message()."\n");

}

$dbhandl e- >set Fet chMbde(DB_FETCHVODE ORDERED) ;

/1 do db sel ect

/1 0 1 2 3

$query = "sel ect mane, nodel no, nbigi mage, m nmage from".
$wacs- >conf _get _attr("tabl es", "nodel s").
" where nflag = 'S order by mane";

$cursor = $dbhandl e- >query(S$query);

/1 output the results

print "\n";

whil e($results = $cursor->fetchRow))

{
print "";
print "conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $resul ts[1]."\">";
print $results[0]."\n";
}

print "\n";
[/ finish off
print "</body>\n";
print "</ htm >\n";
?>

10

Basics: Getting Started

Example 2.7. Perl: Complete Simple Program

#1 [usr/ bi n/ perl

#

MySinpl e - Sanpl e WACS Program (Perl)

#

use WAcs;

use DBI;

read the Wacs configuration files

read_conf;

check the auth(entication and authorisation) of this user
check_aut h($ENV{" REMOTE_ADDR'}, 1);

out put the HTM. headers

print "Content-Type: text/htm\n";

print "\n";

print "<htm >\n";

print "<head>\n";

print "<title>MSinple: Index O Favourites</title>\n";
print "</head>\n";

print "<body>\n";

database initialisation

- establish environnent variable

$dbi env = conf _get _attr("database", "dbi envvar");
i f($dbienv ne "")

{
$ENV{ $dbi env} = conf_get _attr("database", "dbi envval ue");

}
- connect to the database
$dbhandl e=DBI - >connect (conf_get_attr("database", "dbi connect"),
conf_get _attr("database", "dbuser"),
conf_get attr("database", "dbpass”)) ||
die("Can't connect to database\nReason given was $DBl::errstr\n");
do db sel ect
0 1 2 3
$query = "sel ect mane, nodel no, nbigi mage, m nmage from".
conf_get _attr("tabl es”, "nodel s").
" where nflag = 'S order by mane";
$cursor = $dbhandl e- >prepare($query);
$cur sor - >execut e;
print "\n";
while(@esults = $cursor->fetchrow array)

{
print "";
print "<a href=\"".conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $resul ts[1]."\">";
print $results[0]."\n";
}
print "\n";
finish off

print "</body>\n";
print "</ htm >\n";

11

Basics: Getting Started

Running MySimple

Our first WACS application is now complete, so copy the file into the either the web server document
tree (for Php) or the web server cgi-bin directory (for perl). When you call up the URL, you should see
something like this....

® Roxanne

® Sabrina

Granted it's fairly plain, but the names are in aphabetical order and there are links on each name to
that girl's model page. If you didn't see any output, or got an error, you need to check the error log
for the server you're using. With Apache on linux, the usual location of thisis/ var/ | og/ htt pd/
WWW. mywacser ver. com errorl og or something similar to that.

Reviewing The First Program

This has been a fairly long and intense chapter, but we obviously had a lot of ground to cover and we
really wanted to achieve a usable program before the end of it. This hopefully we've done. We've seen
how to include the WA CS module and the Database interface module. We've seen how to use read_conf
and check _auth to read the configuration files and check the user's credentials. We've then made multiple
uses of conf_get_attr to get all of the information together we need to make a connection to the database.

After al that setup procedure, which will become avery familiar template asyou program with the WACS
API, we looked at creating and sending a query to the database, retrieving the results and formating those
results as asimple web page. In the next chapter, we'll ook at how to make use of other information stored
within the database.

12

Chapter 3. Using More Database Fields
Adding Model Icons

In the smple examplein thelast chapter, we saw how to create alist of model's nameswith hypertext links
on each name to that model's standard WACS model page. Obvioudly that's not a particularly presentable
page by itself, so the next step isto add a head shot for each model to the links.

We actually aready paved the way for doing this by including the two headshot image fieldsin the results
we asked for from the SQL query - if you remember, we puit:

sel ect mmane, nodel no, nbi gi mage, m nmage

Since we have the data already, al we need to do now is to add a few extra statements to the output
section to output an appropriate image tag and we'll have included the model's headshot too. We have a
configuration attribute in the server section of the configuration file called siteurl| that tells us where the
site specific WACS web elements area can be found on the WACS server. Standard size model headshots
are conventionally found inthei cons/ directory directly below thetop level. So al we need to doisadd
inacall to conf_get_attr to get it and build the apropriate HTML i ng tag. In PHP we'd write:

print "<ing src=\"".%$wacs->conf_get_attr("server","siteurl");
print "icons/".$results[3]."\" alt=\"[".$results[0]."]\">";

and in perl we'd write:

print "<ing src=\"".conf_get_attr("server","siteurl");
print "icons/".$results[3]."\" alt=\"[".$results[0]."]\">";

this needs to be done just below the line that establishes the link to the model's WACS model page, but
before her name (you could put it after if you prefer) and closing </ a>.

Example 3.1. Modified Output L oop with Icon Code

whil e($results = $cursor->fetchRow())

{
print "";
print "conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $resul ts[1]."\">";
print "<ing src=\"".%$wacs->conf_get_attr("server","siteurl");
print "icons/".$results[3]."\" alt=\"[".$results[0]."]\">";
print $results[0]."\n";

}

and in perl this now looks like:

while(@esults = $cursor->fetchrow array)

{

13

Using More Database Fields

print "";

print "<a href=\"".conf_get_attr("server","cgiurl");

print "wacsnpthunbs/". $resul ts[1]."\">";

print "<inmg src=\"".conf_get_attr("server”,"siteurl");
print "icons/".$results[3]."\" alt=\"[".$results[0]."]\">";
print $results[0]."\n";

}

We then copy up the modified version of the program and run it and we should see something like this:

More Model Information

The WACS database does of course carry far more information about the model thank just her name and
icons, so for the next step we're going to look at adding afew basic pieces of information about her to each
entry. Thefirst step isto add some additional fieldsto thelist of what we want returned by the SQL query.
Initially we're going to add another five fields: they aremhair, mength, ntitsize, msets
andmvi deos. Thesedatabasefieldsgiveusher hair colour, length, the size of her breastsand the number
of images sets and videos we have by her respectively. The modified version of the query looks like:

Example 3.2. Modified SQL command for more Model Info

// do db sel ect

/1 0 1 2 3 4
$query = "sel ect mane, nodel no, nbigi nage, m nage, nhair,

/1 5 6 7 8
" m ength, mitsize, msets, mvideos from"
$wacs- >conf _get _attr("tabl es", "nodel s").
" where nflag = 'S order by mane");

$cursor = $dbhandl e- >query(S$query);

14

Using More Database Fields

in php.
Note

We've added a second line of comments with the element numbers within the array that the
returned database field will appear in; mlength will be index 5 for instance.

The same code in perl will look like:

do db sel ect

0 1 2 3 4
$query = "sel ect mane, nodel no, nbigi nage, minage, mhair,

5 6 7 8
" mength, mitsize, mmsets, mvideos from".
conf_get attr("tabl es", "nodel s").
' where nflag = 'S order by mane";
$cursor = $dbhandl e- >prepare($query);
$cur sor - >execut e;

Using HTML tables

The next step is to modify the display loop to include the extra details and in this case it probably makes
sense to switch to using an HTML table cell to contain and manage the entry. We'll start off by simply
re-writing the existing display loop to build the results into an HTML table instead - once we have that
working, we'll restyle the table to include the extra fields we just added to the query. There is no actua
requirement to make use of al the fields we've requested.

Lets have alook at the structure of the HTML document we're outputing here: First we need to open the
new table, then each model will have her own row as we go through with the headshot image on the left
and her name on the right, and finally well finish off the table. The HTML (minus the links) to do this
will look something like:

<t abl e>

<tr>
<td><i ng src="icons/ Roxanne-1.|pg" alt="[Roxanne]"></td>
<t h>Roxanne</t h>

</tr>

<tr>
<td><ing src="icons/Sabrina-1.jpg" alt="[Sabrina]"></td>
<t h>Sabri na</t h>

</tr>

</ tabl e>

Of coursethe next step isto re-write the code to actually recreate the necessary HTML ; the start and end of
the table simply replace the unordered list (and </ ul >) tags outside the loop that iterates through
the list of models returned by the database. The list element (<l i > and </ | i >) tags get replaced by the
row start and end tags (<t r > and </ t r >. Since we're puting the headshot icon and the name in separate
elements and want a link to the appropriate model page on both of them, we need to double up the code
that creates the hypertext link to wacsmpthumbs. We then include the icon (with alignment attributes) in a
standard tabletag (<t d>and thenamein aheading (<t h>) tabletag soit comesout in bold and iscentred.

The mysimple example thus re-writen will look like:

15

Using More Database Fields

Example 3.3. New version of theloop using tables

/1 output the results
print "<tabl e>\n";
while($results = $cursor->fetchRow))

{
/] start the HTML table row
print "<tr><td valign=top align=center>\n";
/1 link around the headshot inage
print "conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $results[1]."\">";
/1 head shot inmage
print "conf_get_attr("server","siteurl");
print "icons/".$results[3]."\"[".$results[0]."]\">\n";
/1 end this cell and start the next
print "</td><th>\n";
/1 link around nane
print "conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $results[1]."\">";
/1 the nane
print $results[0]."\n";
/1 end the HTM. table row
print "</th></tr>\n";
}

print "</table>\n";
[/ finish off

and re-writing the same function in perl gives us something like:
output the results

print "<table>\n";
while(@esults = $cursor->fetchrow array)

{
start the HTM. table row
print "<tr><td valign=top align=center>\n";
link around the headshot image
print "<a href=\"".conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $resul ts[1]."\">";
head shot inage
print "<inmg src=\"".conf_get_attr("server”,"siteurl");
print "icons/".$results[3]."\"[".$results[0]."]\">\n";
end this cell and start the next
print "</td><th>\n";
link around nane
print "<a href=\"".conf_get_attr("server","cgiurl");
print "wacsnpthunbs/". $resul ts[1]."\">";
the nane
print $results[0]."\n";
end the HTM. table row
print "</th></tr>\n";
}

print "</table>\n";

16

Using More Database Fields

finish off

When run, this modified version of the script should produce the following;:

Roxanne

Sabrina

Asyou can see, this hasimproved the layout somewhat over the previous version using just unordered list
elements. Now to add those extrafields....

Adding The Model Details

To display some more details about the model, we're going to span the headshot on the left hand side
over several rows, and add the model details themselves as additional table rows on the right hand side.
Our first change therefore is to add r owspan=4 to the options on the image container <t d> tag. The
resulting php code is:

/] start the HTML table row
print "<tr><td rowspan=4 valign=top align=center>\n";
/1 link around the headshot inage

and in perl reads:

start the HTM. table row
print "<tr><td rowspan=4 valign=top align=center>\n";
link around the headshot i mage

Next we add the second row which will include her hair colour and length, then a third row which will
describe her breast size and the fourth row that gives the number of image sets and the number of videos
we have for her.

17

Using More Database Fields

Example 3.4. Adding Model I nformation

/1 end the HTM. table row

print "</th></tr>\n";

/1 do the second row (her hair)
print "<tr><td>hair:

print $results[5]." ".$results[4];
print "</td></tr>\n";

/1 do the third row (her breasts)
print "<tr><td>breasts:

print $results[6]."\n";

print "</td></tr>\n";

/1 do the fourth row (her sets)
print "<tr><td>sets:

print $results[7];

if($results[8] > 0)

{

}

print "</td></tr>\n";

print " videos: ".$results[8];

and the same implemented in perl would look like:

end the HTM. table row

print "</th></tr>\n";

do the second row (her hair)
print "<tr><td>hair:

print $results[5]." ".$results[4];
print "</td></tr>\n";

do the third row (her breasts)
print "<tr><td>breasts:

print $results[6]."\n";

print "</td></tr>\n";

do the fourth row (her sets)
print "<tr><td>sets:

print $results[7];

if($results[8] > 0)

{

}

print "</td></tr>\n";

print " videos: ".$results[8];

}

With these changes made, if you now run this version of the program, which is called mysimple4 in the
sanpl es/ progr anm ng directory, you should see something like this:

18

Using More Database Fields

Roxanne
hair: Long Dark Hair
breasts: Small
sets: B videos: |
Sabrina
hair: Shoulder B londe

breasts: Small

There's obviously alot more room for using many more of the fields within the model schemafor further
improvement of our model index, and we'll return to this subject in alater chapter (Chapter 5, The User
Interface Toolkit). Before we leave the topic of models and move on to sets, we will cover just one more
topic, that of adding rating icons.

Adding Other Icons

One of the significant features of WACS is its ability to include various attribute icons within pages to
make specific aspects and attributes easier to recognise. While many of them need some additional logic to
handle their display, afew of them like the model's rating and country of origin are actually fairly simple
to use. We're going to take a quick look at how we'd use the WACS API to include the rating icons before
moving on to look at how we handle sets. We will return to the more complex cases later when we look
at the User Interface toolkit API.

For the modéel's rating, we need the field called nr at i ng so the first step is to add this to the list of
fields that we select from the database:

// do db sel ect

/1 0 1 2 3 4
$query = "sel ect mane, nodel no, nbi gi mage, mi mage, nhair, ".
/1 5 6 7 8 9

" m ength, ntitsize, msets, mvideos, nrating ".
"from".$wacs->conf _get _attr("tabl es", "nodel s").
" where nflag = 'S order by mane";

$cursor = $dbhandl e- >query(S$query);

and in perl the change makes this section read:

do db sel ect
0 1 2 3 4

19

Using More Database Fields

$query = "sel ect mane, nodel no, nbi gi rage, m nage, nhair,

5 6 7 8 9
" m ength, mitsize, msets, mvideos, nrating ".
"from".conf_get_attr("tabl es", "nodel s").
' where nflag = 'S order by mane";

$cursor = $dbhandl e- >prepare($query);

$cur sor - >execut e;

With the rating field now in the data returned to us by the database, we can move down and update the
display section to make use of it. The first step needed isto change the r owspan setting from 4 to 5to
accomodate the extra line of output.

/] start the HTML table row
print "<tr><td rowspan=5 valign=top align=center>\n";
/1 link around the headshot inage

andin perl...

start the HTML table row
print "<tr><td rowspan=5 valign=top align=center>\n";
link around the headshot image

The final step is to add the processing of the mrating field. All WACS icons are typically stored in the
gl yphs/ directory which is within the web server document tree. To find its exact URL, you use the
conf _get _attr function to retrieve the valuei conur | in the section server. Within this directory,
you will find fivefilescalledr ati ng- 1. png throughr at i ng- 5. png which look like this:

YOIV

To make use of thiswe need to first test our datato seeif we have avalid ratings value at all, then merely
concatinate a string to create the necessary icon reference. In php, thiswill look like this:

Example 3.5. Adding A Rating I con

print "</td></tr>\n";

/1 add the rating icon (if we have a val ue)
print "<tr><td align=center valign=top>";
if($results[9] > 0)

{
print "<img src=\"";
print $wacs->conf_get _attr("server","iconurl");
print "rating-".$results[9].".png\">";
print " alt=\"[".$results[9]." out of 5]\">";
}
el se
{
print "no rating";
}

print "</td></tr>\n";

while the same examplein perl, would look like this:

20

Using More Database Fields

print "</td></tr>\n";
add the rating icon (if we have a val ue)
print "<tr><td align=center valign=top>";
if($results[9] > 0)

{
print "<inmg src=\"".conf_get_attr("server”,"iconurl");
print "rating-".$results[9].".png\"";
print " alt=\"[".$results[9]." out of 5]\">";
}
el se
{
print "no rating";
}

print "</td></tr>\n";

}

Once you've put in these three changes, you can run the resulting script and expect to get an output
something like this:

Roxanne
hair: Long Dark Hair
breasts: Small
sets: B videos: 1
Sabrina
hair: Shoulder B londe
breasts: Small

sets: 5

At this point we're hopefully beginning to get arather more satisfying display of model details. Obviously
there are many other tweaks we might like to add, and we'll return to some of those later on when we look
at the User Interface Toolkit and the routines that provides. There is however one more thing we really
should cover now - what happens when something goes wrong.

Improving Error Reporting

One of the most important thingsin good website engineering is ensuring that when thingsfail, it'shandled
gracefully with some kind of reasonable error message returned to the user, and that the event is logged
properly in the system error logs. There are basically four ways in which a WACS application is likely
to fail - authentication, failure to parse the configuration files, and failure to connect to the database, and
failure to find the content.

21

Using More Database Fields

The authentication failure is pretty conclusively covered by the core WACS check _aut h function and
it's partners. The parser is rather more tricky to cope with, and the XML parse routines tend to just abort -
it's also very all or nothing; the file parses or it doesn't. Additionally once a configuration fileisin place,
it's unlikely to become corrupted; if it's merely disappeared the defaults will be used and the system will
most likely have problems at the next stage of connecting to the database. The third is connecting to the
database, which we'll deal withinamoment. Thefourth, failureto find content, doesn't result in completely
blank screens and should get reported to you quite quickly. Additionally there are so many placesit could
be (raid parition, lvm volume, remote fileserver) that we can't really do much in a general way.

Where we can get some traction iswith decent reporting of database connection problems, and thiswhere
the dber r or function comes into play. Previoudly, if we failed to connect to the database we did the
following in php:

if(DB::iserror($dbhandle))
{
die("Can't connect to database\nReason:"
$dbhandl e- >get Message(). "\ n");

}

and the similar stepsin perl were:

$dbhandl e=DBI - >connect (conf_get _attr("database", "dbi connect"),
conf _get attr("database", "dbuser"),
conf _get _attr("database", "dbpass")) ||
die("Can't connect to database\nReason given was $DBl::errstr\n");

To improve this, we're going to change this (called mysimple6 in the example code) to use the dberror
functioninstead. Thisisaroutinethat uses named parameters, atechniquewe'll seealot more of later aswe
use the WacsUI programming library. Basically we passit up to five arguments or parameters, but we tell
it what each oneis, thus the order doesn't matter and if any of them are missing, it doesn't affect the values
of the others. The dberror routine expects parameters called: header, message, error, dbuser and dbhost.

The header is to tell the routine how early in the proceedings we are and whether we still need to start
the HTML of the web page. Setting header to y says we do want a header added, setting it to n sayswe
don't. The next one, message isthe message that the end user will see. The next three are the error message
returned by the database routines, the username it was trying to use, and the database connect string it was
trying to use. Here is the code for doing thisin PHP5:

Example 3.6. Calling dber r or for better error reporting

i f(DB::iserror($dbhandl e))

{
$wacs- >dberror (array(
"header" =>"y",
"message" =>"MWSi npl e6: Can't connect to database”,
"error"=>%dbhandl e- >get Message(),
"dbuser " =>$wacs- >conf _get _attr("database", "dbuser"),
"dbhost " =>$wacs- >conf _get _attr("database", "phpdbconnect")
));
}

while the same basic code in perl looks a little simpler because the parameter names don't need to be
packaged up into an array before they're passed:

22

Using More Database Fields

$dbhandl e=DBI - >connect (conf_get_attr("database", "dbi connect"),
conf_get _attr("database", "dbuser"),
conf_get attr("database", "dbpass”)) ||
dberror(header=>'n',
message=>"Can't connect to database",
error=>$DBl ::errstr,
dbuser =>conf _get _attr("dat abase", "dbuser"),
dbhost =>conf _get _attr ("dat abase", "dbi connect™));

With the error reporting improved, we'll move on to other things. We'll continue to use the short form
version of the error message for brevity in the later examples, but you'll know that you probably want to
actualy use dberror in most cases. Next up, we'll take a look at displaying set details rather than those
of models....

23

Chapter 4. Set Display Routines
About Set Display

So far we've looked at displaying the information in the models table in the database, but of course there
is also the small matter of setswithout which whole thing wouldn't have much point. In this chapter we're
going to look at displaying details of the sets, and then towards the end of the chapter, how to tie models
and sets together.

In most of these examples, we're going to use the standard WACS tools to actually display the details of
the sets themselves, but you can of course write your own web apps to do this should you wish to. In most
caseswell throttle the examplesto only show afirst few setsfrom the databases and assume you'll develop
your own strategies for paginating and sub-dividing the setsin real world applications.

Sets: The Basic Bones

Sincewerestarting anew application, we'll start from scratch with the basic boneswhich welll call setdisp.
Much of the basic structure of this program should be getting quite familiar by now. The same five basic
steps are to be found here - bring in the modules, initialise them, set up the database connection, submit
the query and loop through the results outputting them.

What we're setting out to do in this script isto display alist of the latest additions of image sets marked
as being of category flag type T which means they're solo sets involving toy usage. This we achieve by
requesting only sets of type | which meansimage sets and of category flag type T.

. Tip

The full lists of recommended values for the type and category flag can be found in the
schema reference section at the back of this book in Chapter 11, Schema Reference: Sets.

The basic format is that we once again create an HTML table with arow for each record. There's alink
on the name of the set that leads to the standard WACS page display program wacsindex. This takes a
number of URL arguments but the one we're using here isto prefix the set number with page which puts
it into paged display mode and appended with a. ht m so that it saves correctly and in some cases will
get cached. We're shrinking thefont in which it's displayed asit can be quite along line of text init's stored
form (but more on that topic later).

Note

The SQL query itself looks after the ordering of the output; the or der by sadded
desc retrieves the entries in the reverse order in which they were added - the database
field sadded being the date the set was added to the database, and the desc (meaning
descending) puts the biggest value first. In this case that is the most recent date...

24

Set Display Routines

Example 4.1. The Basic SetDisp Program

<?php

/1 setdisp - set display program

requi re_once "wacs. php";

requi re_once "DB. php";

$wacs = new VMACS;

$wacs- >read_conf ();

$wacs- >check_aut h($_SERVER' REMOTE_ADDR],1);
/] start the docunent

print "<htm >\n";

print "<head>\n";

print "<title>SetDisp - List of Sets</title>\n";
print "</head>\n";

print "<body>\n";

/] connect to the database

$dbi env = $wacs- >conf _get _attr("dat abase", "dbi envvar");
if(! enpty($dbienv))

{

put env($dbi env. "=". $wacs- >conf _get _attr("dat abase", "dbi envval ue"));

$dbhandl e = DB:: connect ($wacs->conf_get_attr("database", "phpdbconnect"));
i f(DB::iserror($dbhandle))

{
die("Can't connect to database\nReason:". $dbhandl e- >get Message()."\n");
}
$dbhandl e- >set Fet chMode(DB_FETCHMODE _ORDERED)
/1 0 1 2 3 4 5
$query = "select setno, stitle, stype, scatflag, sinmges, scodec "
"from".$wacs->conf_get_attr("tables","sets")." ".
"where stype = '1' and scatflag ='T" "

"order by sadded desc ";
$cursor = $dbhandl e- >query(S$query);
print "<table>\n";
$set count =0;
while((($results = $cursor->fetchRow)) &&
($setcount < 25)))

{
/] start the row
print "<tr><td align=center>\n";
[l create the link
print "conf_get_attr("server","cgiurl");
print "wacsi ndex/page". $results[0].".htm\">"
/1 print out the set nane
print ""
print $results[1]."\n";
/1 end the row
print "</td></tr>\n";
$set count ++;
}

print "</table>\n";
print "</body>\n";
print "</ htm >\n";
?>

25

Set Display Routines

and implementing the same code in perl gives us:

#1/ usr/ bi n/ perl

setdisp - set display program

use WAcs;

use DBI;

read_conf ();

check_aut h($ENV{' REMOTE_ADDR }, 1);

out put the HTM. headers

print "Content-Type: text/htm\n";

print "\n";

print "<htm >\n";

print "<head>\n";

print "<title>SetDisp - List of Sets</title>\n";
print "</head>\n";

print "<body>\n";

connect to the database

$dbi env = conf _get _attr("dat abase", "dbi envvar");
i f($dbienv ne "")

{
}

$dbhandl e=DBI - >connect (conf_get_attr("database", "dbi connect"),
conf_get _attr("database", "dbuser"),
conf_get attr("database", "dbpass”)) ||

die("Can't connect to database\nReason given was $DBl::errstr\n");

$ENV{ $dbi env} = conf_get _attr("database", "dbi envval ue");

0 1 2 3 4 5
$query = "select setno, stitle, stype, scatflag, sinmges, scodec "
"from".conf_get_attr("tables","sets")." ".
"where stype = '1' and scatflag ='T" "

"order by sadded desc ";
$cursor = $dbhandl e- >prepare($query);
$cur sor - >execut e;
print "<table>\n";
$set count =0;
while((($results = $cursor->fetchrow array) &&
($setcount < 25)))

{
start the row
print "<tr><td align=center>\n";
create the link
print "<a href=\"".conf_get_attr("server","cgiurl");
print "wacsi ndex/page". $results[0].".htm\">"
print out the set name
print ""
print $results[1]."\n";
end the row
print "</td></tr>\n";
$set count ++;
}

print "</table>\n";
print "</body>\n";
print "</ htm >\n";

26

Set Display Routines

When we run this set against our demonstration web server, we get the following output which isalist of
the sets containing dildo use in most-recent first order.

Sabrina BlackTopG reySkirtPinkBraPanties White BedDildoPussyClip
Roxanne RedWhite Tufts See ThruBabyDollDressMatchingPanties White SofaRope LightsChristmas Tree Dildo
Sabrina CyanSee Thrulingerie TopWhite Stoc kings MoPanties White SofaDildo
Rosanne BrownLeopardPrintBraMatching Panties White Double BedDildo

Adding Icons

While it works and is usable, it's not exactly the greatest web page ever, so let's try and brighten it up a
little. It'd be quite nice to be able to include an icon, and of course wacs has the infrastructure to do this
for us. In fact, it offers us three different options of what size of iconswe'd like: set, stdandm ni .
In this case since we're trying to get afair number of entries shown, we'll opt for the m ni version. We
get this by calling the wacsimg command and specifying that we'd like the mini version.

To makethis happen we need to add another cell to thetablewiththe HTML i ng tag pointing at wacsimg.
Asbeforewelll specify bothal i gnandval i gn propertiesfor thistable cell. So if we modify the code,
much as we did before for the model icons, we get the following in php:

Example 4.2. Adding A Set Icon

/] start the row

print "<tr><td valign=top align=center>\n";

/1 create the Ilink for the icon

print "conf_get_attr("server","cgiurl");
print "wacsi ndex/page". $results[0].".htm\">"

/1 add the icon itself

print "<ing src=\"".%$wacs->conf_get_attr("server","cgiurl");
print "wacsinmg/mni".$results[0].".jpg\" alt=\"[icon for ";
print $results[0]."]\">";

/1 end cell, next cel

print "</td><td align=center>\n";

/1 create the link

and of course the same example in perl looks like:

start the row

print "<tr><td valign=top align=center>\n";

create the link for the icon

print "<a href=\"".conf_get_attr("server","cgiurl");
print "wacsi ndex/page". $results[0].".htm\">";

add the icon itself

print "<img src=\"".conf_get_attr("server","cgiurl");

27

Set Display Routines

print "wacsinmg/mni".$results[0].".jpg\" alt=\"[icon for “;
print $results[0]."]\">";

end cell, next cell

print "</td><td align=center>\n";

create the link

and if we run the resulting program, we get something like this:

Sabrina BlackTopGrevSkirtPinkBraPanties White BedDildoPussyClip

Roanne RedWhite Tufts See ThruBaby Doll Dre ss Matching Panties White SofaRope LightsChristmas Tree Dildo

Sabrina CyanSee ThruLinge rie TopWhite Stockings MoPanties White SofaDildo

Roxanne BrownLeopardPrintBraMate hingPanties White Dou ble Bed Dildo

Making The Text More Readable

One of the design decisionstaken when designing WA CSwasto encourage directory namesto bethe same
as the set names, and to make those more usable outside of the WACS system, to make them not include
spaces. Instead the so-called Camel Technique, so named because of al the humps in it, where an upper
case letter signifiesthe start of each new word. Thisis used along with atechnique where underscores ()
act as the transitions between the three sections of the set name: these are:

1. Model or Models name(s)
2. Her Clothing
3. Location and Action

However the underscore aspect is only used in the directory name and not in the set title (field sti t 1 e)
as stored in the database which has spaces instead. Amongst our tasks, we will need to replace the spaces
with the appropriate HTML table tags.

Fortunately we can use aregular expression to convert the Camel-Style text back into something a little
bit more readable. This next group of changes to the code are to do exactly that. We're going to take a
dightly different approach from before as we're not going to make the split off partsinto seperate HTML
table cells. Thisis because that makes both the font setting and HTML link creation much more complex
- we're merely going to insert a forced line break
 tag into the places where we want a new line to
start. Then we're going to break up the Camel-Style text into seperate words. We do this with:

Our first substitution is going to be to replace the spaces (the section dividersinthe sti t | e field) with
the appropriate HTML directives. The second and third ones actually break up the words at the points
the case changes:

28

Set Display Routines

Example 4.3. Making Camel-Style Text Readable

/1 print out the set nane

print "";

$prettytext $resul ts[1];

$prettytext preg_replace('/\s/','
', S$prettytext);

$prettytext preg_replace('/(\W ([A-Z][a-z])/"',"'$1 $2', S$prettytext);
$prettytext preg_replace('/([a-z])([A-Z])',"'$1 $2', S$prettytext);
print $prettytext."\n";

/1 end the row

Toimplement the samefunctionality in perl actually usesexactly the sameregular expressions (akaregexp)
but looks very different asit's all done in assignment operations without any explicit function call. There's
no pr eg_r epl ace used here. Anyway hereis exactly the same functionality in perl:

print out the set name

print "";
$prettytext = $results[1];

$prettytext =~ s/\s/
/g;

Sprettytext =~ s, (\w) ([A-Z][a-z]), $1 $2, g;

Sprettytext =~ s,([a-z])([A-Z]), $1 $2, g;

print $prettytext."\n";

end the row

With these changes in place, we can once again copy over the code and we have a much more presentable
output from the program; here's an example:

Sabrina
Black Top Grey Skirt Pink Bra Panties
White Bed Dildo Pussy Clip

Roxanne

Red White Tufts See Thru Baby Doll Dress Matching Panties
White Sofa Rope Lights Christmas Tree Dildo

Sabrina
Cyan See Thru Lingerie Top White Stockings Mo Panties
White Sofa Dildo

Roxanne
Erown Leopard Print Bra Matching Panties
White Double Bed Dildo

Hopefully with this we've got the output presentation of the sets list looking awhole lot better than it was
inthefirst example. There are of course many more fields within the set database that we could al so make
use of in our pages. Wewill return to them when we look at the WA CS User Interface Toolkit in Chapter 5,
The User Interface Toolkit. For now, before we finish our look at sets, we're just going to look at how we
find the model or models featured in a given set.

29

Set Display Routines

Connecting Sets And Models

Understanding The Data Architecture

One of the things that often confuses people about true relational databases is that they are unable to do
a one-to-many or many-to-many relationship directly. While many so called easy-to-use databases do
offer field types that purport to offer such linking, they are problematic and do not fit into any sensible
logical model for how things should be structured. Worse, each vendor's implementation (those who do
implement it at all) is different and incompatible. However with a sensible schema design, this limitation
really isn't aproblem at all.

One such instance of this need to link one-to-many is the concept of linking a set with a model within
WACS. Inthe easy case, you'd have thought that you'd simply put the model number into one of the fields
inthe set schemaand the job would be done. But what do you then do when you have two model sfeaturing
in a set; easy you might say - oneisthe main model, the other is a secondary model, so just add a second
field for the additional model and put the second number there. Of course that then makes the SQL query
more complex each time as you've got to check both fields before you know if amodel isin a set or not.
It still might work, but it's already getting cumbersome. Y ou might discover a set first by virtue of the
additional model and only afterwards identify the official primary model.

Just about every adult sitewe've encountered does feature at least afew setswith three models, so suddenly
we'relooking at asecond additional model field and having to check that aswell. And believe me, thereare
afew sites of which Sapphic Erotica comes to mind in particular where sets with three, four, five or even
six modelsin asingle set are relatively common. Simply put, adding models to the sets table just doesn't
scale. So we take the proper relational database approach and add an additional schema called assoc for
associations which gives us these relationships. It's a very simple schema, basically containing a primary
key, amodel number and a set number.

Using Relationships With Assoc

The process of finding out who isin a set becomes very simple and straight forward - you simply search
the assoc table for the set number you're looking at. If we're looking for who isin set no 123, we simply
use the following SQL query:

sel ect anpdel no from assoc
where asetno = 123

We then merely loop through the results of the above query and each record we find is another model
involved in this set. If we don't get any results returned, then there aren't any models associated with this
particular set. Of course we probably want more than just the model number(s), but that too is relatively
simple. Consider the following query:

sel ect nodel no, mane, ni nmage, nbi gi mage
from nodel s, assoc
wher e nodel no = anodel no

and asetno = 123

This query simply retrieves the model details for each model who isinvolved with this particular set, one
record at a time. Due to the way relational databases are engineered, this is actually a very quick and

30

Set Display Routines

efficent process. Thefirst line of thewher e clause doeswhat isknown asarelational join and establishes
the necessary connection between the assoc and nodel s tables necessary for what we're trying to do.
Additionally it's a very logical and elegant solution that will cope with none, one, two, three, four or as
many models as you like within a single simple action.

Note

Although we make use of the assoc table, we don't actually use any results from it - we don't
need to - it has silently taken care of handling the connection we needed to make.

An Example Using Assoc

If we go back to our example program displaying sets, we can modify it to include this activity as a sub-
routine. What we're going to do isto divide the right hand side of the output into the two cells, one with
thetitle, and the other with the model(s) featuring in the set. Theicon will remain on the left. First stepis
to add the rowspan attribute to the left hand side cell so the icon spansit.

Example 4.4. Modified Icon Cell

/] start the row
print "<tr><td rowspan=2 valign=top align=center>\n";
/1 create the link for the icon

and in perl, it'll look very similar:

start the row
print "<tr><td rowspan=2 valign=top align=center>\n";
create the link for the icon

The next step isto create anew function to handle the query to ook up the entriesin the assoc table. We're
going to call this function simply get nodel and it'll take just one argument, the set number for which
we want the model(s) details. It will return to us a potentially quite long string variable containing all the
model names that matched surrounded by alink to each model's WACS model page.

Note

So long aswe use adifferent cursor variable to the database routines we can quite happily run
another query and loop through it's results while inside an outer loop looking at the results
of acompletely different query. Thisiswhere the whole concept of a cursor becomes really
useful.

31

Set Display Routines

Example 4.5. getmodel Subroutine

function getnodel ($setno) {

gl obal $dbhandl e;

gl obal $wacs;

$gmresult="";

/1 0 1 2 3

$nodel query="sel ect nodel no, mane, m nmage, nbi gi nage "
"from".$wacs->conf _get _attr("tabl es", "nodel s").
", ".$wacs->conf_get _attr("tables", "assoc")." ".
"where nodel no = anodel no "

and asetno = ". $setno."

"order by mmane ";

$nodel cur sor =$dbhandl e- >quer y($nodel query);

/1 loop through the results

whi | e($rmodel results = $nmodel cursor->f et chRow())

{
/1 do we need a divider?
if(! enpty($gnresult))
{
$gnmresul t. ="
";
}
/1 add the nodel Iink
$gnresult.="conf_get _attr(
"server","cgiurl")."wacsnmpt hunbs/".
$nmodel resul ts[0]. "\ ">";
/1 add her nane and close |ink
$gnresul t. =$nodel resul ts[1].""
}

/1 return the conplete string
return($gnresult);

}

and the same code implemented in perl looks like this:

sub getnodel ($)
{
ny($setno)=@;
my($gnresult, $nodel query, $nodel cursor, @mdelresults);
$gnresul t="";
#
$nodel query="sel ect nodel no, mmane, m mage, nbi gi mage "
"from".conf_get_attr("tabl es", "nodel s").
", ".conf_get_attr("tabl es","assoc")." ".
"where nodel no = anodel no "
and asetno = ". $setno."
"order by mmame "
$nodel cur sor =$dbhandl e- >pr epare($nodel query);
$nodel cur sor - >execut g;
loop through the results
whi |l e(@rodel results = $nodel cursor->fetchrow array)

{

32

Set Display Routines

}

do we need a divider
if($gnresult ne "")

{

}
add the nodel |ink

$gmresult.="<a href=\"".conf_get_attr("server","cgiurl").
“wacsnpt hunmbs/". $nodel resul ts[0] . "\ ">";

add her nane and cl ose |ink

$gmresul t. =$nodel resul ts[1]."";

$gnresul t.="
";

return the conplete string
return($gnresult);

}

The final step of this process is to add into our main loop going through the retrieved set records a call
totheget nodel function. Thislookslike:

Example 4.6. Calling The get nodel Function

/1 next right hand cell

print "<tr><td align=center>\n";
print getnodel ($results[0]);

print "</td></tr>\n";

/1

i ncrement set count

and in perl thislooks like

next right hand cell

print "<tr><td align=center>\n";
print getnodel ($results[0]);

print "</td></tr>\n";

increment set count

With these changes incorporated into the code, we now have the finished version of the setdisp program
(setdisp4.php or setdisp4 in the samples directory. If we now copy this script up to the web server and
run it, we should see something like this:

33

Set Display Routines

Sabrina
Black Top Grey Skit Pink Ba Panties

White Bed Dikdo Pussy Clip

Sabrina

Foxanneg
Red White Tufts See Thru Baby Doll Dress Matching Panties
Whitz Sofa Rope Lights Christmas Tree Dido

Roxanne

Sabrina
Cyan See Thru Lingerne Top White Stockings No Panties
White Sofa Dido

Sabrina

Roxanne
Brown Leopard Print Bra Matching Panties
White Double Bed Dido

Roxanne

Once again we've gradually devel oped a program up to the point whereit is now offering quite reasonable
functionality and layout making use of the WACS programmerstoolkit API. Hopefully this has given you
an insight into what WACS is capable of and the basics of how to make use of it's API. In due course,
we hope to have arespository of WACS skins, or mini-site scripts, which you can download and tailor to
your own needs. If in the course of learning the WACS API you write some programs you'd be happy to
share with others, please send them to us and we'll include them in the respository.

Chapter 5. The User Interface Toolkit

Introducing WacsUI

In this chapter, we're going to take a dlightly different tack, we're going to just look at code segments
you could choose to include within your application, primarily user interface components taken from the
User Interface toolkit, WacsUI. Thisis not going to be an exhaustive review of what is available as that
iscovered in detail in the reference section, Chapter 8, WACSAPI: User Interface Module. Instead thisis
just aquick taster of just afew of the calls provided by the WacsUI toolkit.

So far we've been dealing with the various routines that are provided by the Core Wacs module - and these
relate primarily to configuration parameters and security. There is a second module available for you to
use called WacsUI, the WACS User Interface Toolkit. Thisconcernsitself primarily with providing utility

functions to ease the tasks of formatting and preparing data from the database into a form more suitable
for use in web pages.

Including WacsUI support

To include support for the WACS User Interface (WacsUI) toolkit within your application, you need to
add the following extra lines to your code, ideally just after the Wacs core module.

Example5.1. WacsUlI initialisation

requi re_once "wacsui.php";
$wacsui = new WacsUl ;

and here's the perl dialect of the same activity...

use WacsuUl ;

WacsUI: DescribeHer

Thefirst function from WacsUI that we're going to look at is called describeher and it is designed to take
the output of the very regemented values of the moddl attributes fields of the database and turn them into
something much more readable. Although not implemented yet this provides agood mechanism for doing
other translations or providing an attribute table rather than a textual description.

35

The User Interface Toolkit

Example 5.2. Using WacsUI : describeher

print $wacsui - >descri beher (
array('hair'=>$results[4],

"l ength' =>resul ts[5],

"titsize' =>results[6],

' pussy' =>resul ts[7],

"race' =>resul ts[8],

"buil d' =>resul ts[9],

"hei ght' =>resul t s[10],

"wei ght' =>resul t s[11],
‘occupation =>results[12]))."\n";

Note

We have to package up our parameter list as an array in order to pass it in Php; perl is
somewhat simpler with a simple sequence of named parameters.

print describeher (

hai r =>$resul ts[4],

| engt h=>%$r esul ts[5],
titsize=>%resul ts[6],
pussy=>$resul ts[7],
race=>$resul ts[8],

bui | d=>$resul ts[9],

hei ght =>$r esul t s[10],

wei ght =>$resul t s[11],
occupation=>$resul ts[12])."\n";

The above example is based upon modifying the MySimple example program from in the second chapter
(Chapter 2, Basics: Getting Started) to add the following extrafieldsinto thequery: mhai r, m engt h,
ntitsize, npussy, nrace, nbuild, mheight, nmneight, noccupation after the
mimage (with a comma of course) and before the from clause.

The what shedoes function

Aswith the previousdescr i beher, what shedoes isdesigned to make a readable sentence from a
number of fixed format database fields. In this case however, it's alittle different as the values passed in
aretypically either Y for yes, or N for no, and they are trandlated to atext phrase based upon what they're
valueis. This also means that if you're using array subscripts to fetch the database field values you need
to be careful about positioning. Give ayes to the wrong field and the error will not be as obvious - while
“blonde breasts” would be easy to spot, the fact that each model who did masturbation scenes was listed
as doing straight scenes would be less apparent.

For the purposes of this example, we're adding yet more fields to the select statement in the original
MySimple program shown in the second chapter (Chapter 2, Basics: Getting Sarted). Inthiscasensol o,
nmstrai ght, mesbian, nfetish, moys, mmast and not her.

36

The User Interface Toolkit

Example 5.3. Using WacsUI: whatshedoes

print $wacsui - >what shedoes(

array('sol o' =>$resul ts[13],
'straight'=>%resul ts[14],
"l esbi an' =>$resul t s[15],
"fetish' =>$resul ts[16],
"toys' =>%resul ts[17],
" mast ur bati on' =>$resul ts[18],
"other' =>$results[19]))."\n";

The same function works just the same in perl without the need for the array declaration wrapper:

print what shedoes(

sol o=>%resul t s[13],

strai ght =>$resul t s[14],

| esbi an=>%resul t s[15],

feti sh=>%resul t s[16],
toys=>%resul ts[17],

mast ur bat i on=>%resul t s[18],
ot her =>$resul ts[19])."\ n";

The addkeyi cons function

Both the nodel s and set s schemas feature fields that contain a space seperated list of keywords that
mark certain attributes found within that set. These can be quickly turned into a small HTML table of
icons using the routine addkeyicons. The fields suitable for use with this are scat i nf o from the sets
tableand mat t r i but es from the models table. These are passed as the first attribute; the second being
the displayed size of the icons which for the default icons would be a maximum of 48 x 48 pixels. The
function is called simply with:

Example 5.4. Using AddK eyl cons

addkeyi cons($results[16], 24);

| conl i1 nk: WacsUI's Most Important Function

We're now going totakealook at WacsUI module'smost important function,i conl i nk. It'sjobissimply
to display and icon with an appropriate link around it. Sounds simple enough, doesn't it? Unfortunately it
isn't - there'salot of work that needs to be done relating to permissions, access methods, checking caches
and resizing which actually makes it fairly complex. The good newsisthat thei conl i nk function will
doit all for you!

Thei conl i nk function takes quite afew argumentswhich control how it works, but they are reasonably
straightforward. In most cases parameters are optional and sensible defaults will be used instead if they
are not given - obviously things like set number and the location fields (sar ea, scategory and
sdi rect or y) are necessary.

37

The User Interface Toolkit

Example5.5. Using thei conl i nk function

print $wacsui ->i conli nk(

array('type' =>$setdetail s[1],
'setno' =>$setdetail s[0],
'sarea' =>$setdetail s[2],
'scat egory' =>$setdetail s[3],
"sdirectory' =>$setdetail s[4],
' nodel ' =>$noddet ai | s[1],
"resize'=>0))."\n";

The perl dialect is again very much the same:

print iconlink(type=>$setdetail s[1],
set no=>%set det ai | s[0],
sarea=>%set det ai | s[2],
scat egory=>$set det ai | s[3],
sdi rect ory=>%set det ai | s[4],
nodel =>noddet ai | s[1] .
resize=> 0))."\n";

WacsUI: Other Functions

Another example of using the wacsui module can be found in the newsets.php application in the samples
directory. Thisisamore "real world" worked example showing a new releases index page; it makes use
of both the iconlink and addkeyicons functions.

Detailed documentation on each call available and how it works can be found in the API reference section
Chapter 8, WACS API: User Interface Module. Another good source of examples of how to utilise these
functions is to be found in the the section called “Wacs-PHP: The Simple Skin” provided as part of the
Wacs-PHP API library. And of course don't forget that you can always look at how the main WACS user
environment applications themselves make use of these functions.

Conclusions

We've now come to the end of the basic WACS API tutoria, at least for this edition of the WACS
Programmers Guide. It is our intention to expand this section in future editions. Still, it has hopefully
introduced you to the key concepts in making use of the WACS Programming APl and given you some
useful simple programs to build on when creating your own applications. The rest of this book consists
of the WACS API reference manual and the WA CS Database Schema Reference. If these do not provide
sufficient information, please contact us via the methods listed on the WACS web site at SourceForge
[http://wacsip.sourceforge.net].

38

http://wacsip.sourceforge.net
http://wacsip.sourceforge.net

Chapter 6. Wacs-PHP: The Skins
Introduction To PHP Skins

In previous chapters we've mentioned that the WACS Application Programming Interface (APl) is
available in both Perl and PHP5. We've also mentioned that many commercial web sites will choose to
design their own web pages and will make use of the extensive WA CS database infrastructure and utilities
viathe API from such pages. Other people may simply be interested in using it to tailor the presentation
of their WACS siteto their personal preferences.

With the Skins project, we go a step further by providing an alternative WACS-based web site written
using the Wacs API for PHP5. This can serve one of two purposes - to provide a more complex set of
example programs for web designers to study in order to familiarise themselves with how the APIs are
used, or it can simply be restyled and personalised to provide aturn-key porn web site quickly and easily.
In due course we hope people will contribute some sample pages of their own and there may be a choice
of componentsto make the process easier. Initially we are providing just one skin known assimple. Toaid
both understanding and the ease of restyling, the Simple Skin isimplemented using an external cascading
style sheet separate from the HTML output generated by the php programs.

Note

The Wacs-PHP Simple Skin is still very much an under development project and only just
became fully functional at 0.8.5. Y ou can always dive in and help us make it even better!

Wacs-PHP: The Simple Skin

The provided simple skin consists of a number of small PHP5 programs and a single large style sheet
shared by all the applications. The php programs are:

Table 6.1. Simple Skin: Components

Name Description

index.php The main menu of the ssimple skins site - equivalent to wacsfp in WACS itself

latest.php The simple skins combined new models, new sets and new videos page - no
direct WACS equivalent

girliephp The model page of the simple skins site - very loosely equivalent to
wacsmpthumbsin WACS itself

directory.php The Alphabetic directory of models - similiar to just one of the modes of
wacsmodelthumbsin WACS itself

galleries.php Theindex of galeries - arather different approach from wacsshow in WACS

itself. Focuses on indexing all the entries in a given top level area (sarea); to
index the toplevels themselves, use movies.php below.

gallery.php An individual gallery display - similiar to that produced by wacsimglist in
WACS itself.

movies.php A top level view of the galleries. Works for either images or videos despite
the name.

39

Wacs-PHP: The Skins

Name Description

photos.php A photo set front page - similiar to wacsindex in info mode.

videos.php The video clip version of the above.

sear ch.php The search system for the ssimple skin. This takes a very different approach
from the search system in WACS core as it amalgamates both model and clip
attributes into a single search engine.

Styling Wacs-PHP Skins

One of the design objectives of the Wacs-PHP skins project was to make it easy to restyle the pages to
look very different without touching the code itself purely through use of Cascading Style Sheets. To this
end each page has alarge number of named <div> and directives placed throughout the generated
pages to provide aframework for this to happen.

The first of these is that every page has a standard core structure to it which consists of three div
elementswith thefollowingids: pagebanner for thetop heading, navi gat i on for the menu linksand
mai ncanvas for the content itself. They will also always be featured in this order. Y ou can of course
choose to make them invisible or use javascript to toggle their visibility to make pull down menus and
thelike.

In addition to the core layout detailed above, there are also a number of div classes (because they
often repeat) that are set on each type of icon that may be displayed. For set-based content, these are
nor nmovi et i | e andnor m nmaget i | e for regular standard sized icons and for the smaller ones (but
which are used heavily in the simple skin) i magesettil e and novi esetti | e. For generic styling
of the small icons there is aso a span class of ni ni i con around theicon itself.

Moving onto Models, heretoo thereare standard div wrappersaround all instances of model iconsallowing
them to be styled. For the normal model headshot icon, thereisadiv of classnodel t i | e around theicon
block itself, with spansof classesi connbdel andi connodel nane around theiconitself and the text
of her name respectively. Around the large model headshot you will find adiv with theid of headshot
inthe girlie.php program which is the only place that Wacs-PHP uses the large format headshot.

WACS and Web 2.0

There's alot of buzz in the IT industry a the moment about dynamic content on the web - also known
as Web 2.0. This is where the web page changes what it displays immediately with each selection that
you make. So far we've not seen much application of the technology on adult web sites, but as we rather
pride ourselves on having the capabilities of the very best, we decided to go ahead and prove we can do
it with WACS. The modelsel.php application introduced in WACS 0.8.4 isthe first example of this. This
application simply displays variousiconsrelated to hair colour, length, breast size and pubic hair style. As
you click on these, the page updates with a selection of headshots that match the specified criteria.

The modelsel.php application itself is fairly simplistic and it's use of the underlying AJAX architecture
is not the most effecient but we still think it's an interesting and ground breaking application. We've a'so
used it as a showcase of how redlitively easy it is to integrate php-based applications into the main perl
based Wacs infra-structure as it shares the look and feel of the perl based apps.

We do intend to expand on this theme in coming releases with similar dynamic search mechanisms for
image sets and videos.

40

Part |I. WACS API
Programming Reference

Thisisthe API (Application Programming Interface) reference manual for the WACS environment. It documents the
main API calsin both Perl and PHP dialects. There are now six operational modules available as part of the WACS
system, plus a utility module used by the installers.

Table2. TheKey WACS Modules

WACSModulelList
name part of description
Wacs.pm Core the main Wacs module
WacsUl.pm Core the Wacs User Interface module
WacsStd.pm Core the Wacs Standardised Components module
Wacsl D.pm Core the Wacs Identification module
wacs.php wacs-php the main Wacs module, Php dialect
wacsui.php wacs-php the Wacs user interface module, Php dialect

Chapter 7, WACSAPI: Core Module

Chapter 8, WACSAPI: User Interface Module
Chapter 9, WACS API: Sandard Components Module
Chapter 10, WACS API: Identification Module

Chapter 7. WACS API: Core Module

Core Module: Summary

Table 7.1. Function Summary: Core Module

function description

read conf locate and read the XML based configuration file
check_auth check that thisis an authorised access

auth_error report an authentication error and suggest remedies
auth_user return the registered username for this 1P

add_auth add a new authentication token to access control system
find_config_location try to locate the specified XML config file

conf_get_attr get the requested configuration attribute

auth_get_attr get the requested access control list attribute

dberror produce a more helpful error page when db connections fail
gettoday get today's date as a string suitable for the current DB
timecomps break a date down into component parts

vendlink provide alink to the vendors site

getvaluename takes a single character flag and converts to string
geticonlist getstheicon array for the specified object type

gettypecol our get the prevailing colour scheme for the set type

divideup make a directory name more readable

checkexclude check for this file name being one to ignore/hide
checkindex check for what might be an index file

makedbsafe try to make the returned string safe for use in the database
addheadercss add standard preamble to enable javascript menus
setgroupperms set the appropriate group permissions for co-operative updating
treemkdir create atree of directories (mkdir -p equiv)

Core Module: Reference

Core Module: Reference

The following pages contain the *nix style reference pages for each function call in the WACS core
module. These detail what the function does, what parametersit takes, what it returns and which versions
of the corelibrary itisavailablein.

42

WACS API: Core Module

Name

read_conf — read Wacs core config modules
Synopsis
use Wacs,

read_conf

Summary

Ther ead_conf causes the standard WACS XML configuration file, wacs. cf g to be parsed and the
contentsread into internal memory structures in the WACS modulefor later use by other WACS routines.
The main interface to accessing thisinformationisthecall conf _get _attr.

read_conf is senstive to the environment variable WACS_CONFI G which specifies a directory
containing an alternativewacs. cf g configuration file.

Availability

r ead_conf isavailablein both perl and php.

43

WACS API: Core Module

Name

check_auth — check if this |P address is authorised for access
Synopsis
use Wacs,

check _auth(i p_address, vocal error);

scal ar i p_address;
scal ar vocal _error;

Summary

check_aut h checks whether the passed |P address is authorised for access to this Wacs server at this
time. Thisauthorisation may be by either permanent or |ease permission based upon the calling |P address.
This|P addressis specified by the first parameter to the function. The second parameter controls what will
be done about it: if the valueis 0 (zero), the call will merely terminate the session by exiting the program;
if thevalueis 1 (one), an authorisation error HTML page will be displayed offering the user the option to
log in. In the Perl version, an additional option of 2 (two) is available which outputs a failure icon in the
case of an expired lease and a request for an image file - thisis not possible in PHP as the content type
of text/html has already been determined.

Availability

check_aut h isavailablein both perl and php.

WACS API: Core Module

Name

auth_error — create areasonable HTML error page with reason and link to remedy

Synopsis
use Wacs,
aut h_error(nessage);

scal ar nessage;

Summary

aut h_error creates areasonable HTML error page with reason and link to remedy if applicable (ie
login page). The message parameter will be placed in a bordered box near the bottom of the message and
can be used to convey additional information. check _aut h setsthistoSorry, your | ease has
expi red. whenthat isthe case.

Availability

aut h_err or isavailablein both perl and php.

45

WACS API: Core Module

Name

auth_user — return the account name of the user associated with |P address

Synopsis
use Wacs;
scal ar aut h_user (i p_address);

scal ar i p_address;

Summary
aut h_user returnsthe account name of the user associated with the specified | P address.
Availability

aut h_user isavailable in both perl and php.

46

WACS API: Core Module

Name

add_auth — add a new authentication token to the access control list

Synopsis

use Wacs,
add_auth(...);
Parameters
parameter description
ipaddr The IP Address of the host being authorised.
user account name of the user being registered
type type of registration being undertaken - currently | ease
role leval of access granted currently: vi ewer, power oradni n
date date at which this lease should expire
prefexcl preference exclusions: the scatflag values not to be shown by default
usedirect whether to use the usedirect function if supported by the server - can beyes
or no
imagepage whether to create links to framed page or raw ones - should bef r ame or r aw
scaling whento useimagescaling - canbenone, slide, slide+pageandal |
size size of scaled images when applicable in the format 1024x768
quality jpeg quality setting used when scaling images
delay desired delay before next image in slideshow
Summary

add_aut h adds a new authentication token to the access control list, ie the leasesfile. Thisisthe action
taken by the wacslogin command after it has authenticated the user. It can also be used to update the user
preferences - it is used by wacslogin, wacspref and wacsl ogout.

Availability

add_aut h is currently available only in perl. A php implementation is possible in a future release if
required.

47

WACS API: Core Module

Name
find_config_location — return the location of the requested config file

Synopsis
use Wacs,

scalar find _config |ocation(configuration filenane);

scal ar configuration_filenaneg;

Summary

find _config_| ocati on returnsthelocation of the requested config file. It first checksthe directory
specified by the WACS CONFI G environment variable, and then tries the built-in list of possible WACS
configuration file locations. Thislistisnormally: / et ¢/ wacs. d, then /usr/ | ocal / et c/ wacs. d
and finally / opt / wacs/ et ¢/ wacs. d . If the specified file is not found in any of these locations, a
null string is returned.

Note
Thelocation specified by the environment variable WACS _CONFI Gtakes precidence, if and

only if the requested file is present there. The normal directories are searched afterwards if
the fileis not found in the directory specified.

Availability

find_config_|l ocati onisavailablein both perl and php.

48

WACS API: Core Module

Name
conf_get_attr — get the specified attribute from the config file values
Synopsis
use Wacs,
scal ar conf_get _attr(configuration_section, configuration_ attribute);

scal ar configuration_section;
scal ar configuration_attribute;

Summary

conf _get attr returnsthe specified attribute from the config file or it's default value if not specified
there. The WACS configuration files are divided into a number of logical sections; the first parameter
specifies which of these is required: amongst those defined are dat abase, tables, fsloc,
server, security, download, colours, |ayout, precedence anddebug. Please
see the WACS configuration guide and sample wacs.cfg files for more information on what information
isavailable.

Availability

conf _get _attr isavailablein both perl and php.

49

WACS API: Core Module

Name
auth_get_attr — get the specified attribute from the authorisation file values

Synopsis
use Wacs,
scal ar auth_get attr(ip_address, authorisation_ attribute);

scal ar i p_address;
scal ar authorisation_attribute;

Summary

aut h_get _attr returns the specified attribute from the authorisation file or it's default value if not
specified there. These look ups are based on the | P address of the host - typical attributes include the user
name, the preference exclusions, the role, and the various preference settings - see add _auth for more info.

Availability

aut h_get _at tr isavailablein both perl and php.

50

WACS API: Core Module

Name

dberror — produce a more helpful error page when db connectionsfail

Synopsis

use Wacs,
dberror(...);
Parameters
parameter description
header Whether to add an HTML preamble or not; n for no, y for yes.
message The message the end-user should recieve
error The error message returned from the database routines; logged in the web
server error log
dbuser The database user account with which the access was being attempted, from
the config filesdbuser entry.
dbhost The host specification of the database that it was trying to access, from the
config file'sdbi connect entry when using perl, and the phpdbconnect
entry when using PHP
Summary

The dber r or function provides a detailed and hopefully helpful error message when the WACS sub-
system cannot connect to the database server. It also logs details of the failure to the web server error log.

Availability

dberror isavailablein both perl and php. It was introduced in Wacs 0.8.1.

51

WACS API: Core Module

Name

gettoday — get todays date and various relations thereof

Synopsis

use Wacs,

scal ar gettoday(...);

Parameters

parameter

description

format

which format to return datein (DD- MON- YYYYY or YYYY- M\t DD) - default
is native format for the current database

epoch

the actual date to convert in Unix seconds since 1970 format.

offset

number of days different from today - assumed to be historial if postive, future
if negative - thusyesterday will be 1, aweek ago will be 7, tomorrow will be-1.

Summary

The get t oday function returns either todays date or various deviations thereform - yesterday, a week

ago, two weeks ago, etc.

Availability

get t oday isavailablein both perl and php.

52

WACS API: Core Module

Name

timecomps — return seperated time components

Synopsis
use Wacs,
array tinmeconps(date_in _db format); (format);
scal ar date_in_db_format;

Summary

Theti neconps breaks a database format date up into year, month and day components. The optional
format parameter can specify a non-native date format for conversion purposes.

Availability

t i meconps isavailable in both perl and php.

53

WACS API: Core Module

Name

vendlink — provide (if possible) alink to the vendor's site for this model

Synopsis

use Wacs,

scal ar vendlink(...);

Parameters
parameter description
vendor the vendor's reference (ie their vsiteid)
page which page to get: valid options are di rect ory, nodel page, bi o,
vi di ndex, vidpage, ingpage, altpage, orsignup .
name the model's name
key the model's key for this site
atkey the modédl's alternative key for this site
setkey the setkey if this request needs it (depends on the value of page above
sessionkey the session key (if required and known).
modelno the WACS model number for this request (believe me we occasionally need
this)
setno the WACS set number for this request (see above - this too)
dbhandle current handle to the database connection
Summary

Thevendl i nk provides (if possible) alink to a page on the vendor's site for this model or set. Specify
the page you require using the page parameter - can link to any one of the many pages the vendor database

knows about.

Availability

vendl i nk isavailablein only in perl at present. If you need it in PHP, please put in areguest for it on

the sourceforge tracker.

WACS API: Core Module

Name

getvaluename — provide the long name for the specified value of specified type

Synopsis
use Wacs,

scal ar getval uenane(...);

Parameters

parameter description

object The object you want the mapping for - see geticonlist below

value The value you want mapped to it's long format (often a single character.
Summary

The get val uenane function returns the long (readable) name for the specified short value of specified
fixed values attribute type. For instance, if you want to get the long name for type "M", you call
get val uenane with obj ect =>"types" and val ue=>Mand get val uenane will return
Mast ur bat i on.

Availability

get val uenane isavailablein both perl and php.

55

WACS API: Core Module

Name

geticonlist — return the array of attributes to filename/long name mappings.

Synopsis
use Wacs,
hashref geticonlist(requested object);

scal ar request ed_obj ect;

Summary

Thegeti conl i st function returnsan array/ hashref of the legal valuesfor the requested type object. In
some cases thiswill be the filenames of theicon for the attributes; in other casesit'll be the single character
legal values and their long form names. Valid requestsinclude: nodel s, sets, types, nedia,
dstatus, regions, flags, pussy andpicon.

Availability

geti conl i st isavailablein both perl and php. The pi con attribute was added in Wacs 0.8.2.

56

WACS API: Core Module

Name
gettypecolour — return the background colour for this type of set

Synopsis
use Wacs,
scal ar gettypecol our(set_type);
scal ar set _type;

Summary

Theget t ypecol our returnsthe HTML colour specification for the background of the current set type.
Passit the set stypevaluel , V, etc.

Availability

get t ypecol our isavailablein both perl and php.

57

WACS API: Core Module

Name
divideup — make Camel-style text more readable and add HTML markup

Synopsis
use Wacs,

scal ar divideup(original text, divider, already small_font);

scal ar original text;
scal ar divider;
scal ar already_smal | _font;

Summary

Thedi vi deup function returns a more readable version of the so-called Camel Style wording used in
creating WACS directories. It also embeds HTML directivesto try and ensure that even long entries don't
take up too much space. The first argument is the original text (typicaly the field stitle from the sets
database), the second (divider) istypically the HTML break tag
 but could be other thingslike atable
divider sequence </ t d><t d> . The third parameter signifies whether the font in use is already small -
if set to 0 (zero), HTML tagsto reduce the font size be based on using sizeis-1 for long lines; if it's set to
1 (one) it'll be assumed they were already using sizeis -2, and will therefore use size = -3. Asfrom Wacs
0.8.5, -1 is also available which suppresses the resizing of long linesif required.

Availability

di vi deup isavailablein both perl and php.

58

WACS API: Core Module

Name

checkexclude — test for being adirectory file or other reserved purpose name

Synopsis
use Wacs,
scal ar checkexcl ude(fil enane);
scal ar fil enane;

Summary

Thecheckexcl ude returns 1 if the file is one of those that should be excluded from consideration (ie
. or.. oroneof ourslike. i nf o or. unpack). If thefilelooks genuine, returns 0.

Availability

checkexcl ude isavailable only in perl asit isjust used for collection management tasks.

59

WACS API: Core Module

Name

checkindex — try to guess if thisis an index image file

Synopsis
use Wacs,
scal ar checki ndex(fil enan®e);

scal ar fil enamne;

Summary

The checki ndex triesto guessif agiven file name s likely to be an index file or aregular image file
based upon it's name. If it'saname associated with index files, it returns 1; if itisn't checki ndex returns
0.

Availability

checki ndex isavailablein only perl asit isreally only appropriate to collection management tools.

60

WACS API: Core Module

Name
makedbsafe — try to make the returned string safe for use in the database

Synopsis
use Wacs,

scal ar nmakedbsafe(...);

Parameters
parameter description
string the string of text to be considered
alow charactersto allow which are not normally acceptable: at present only forward
dlash (/) isrecognised
deny charactersto deny which are normal acceptable: at present any space character
(space, tab, newline) given here will cause any whitespace characters to be
stripped out.
Summary

The makedbsaf e function is designed to remove characters which are unsuitable for feeding to the
database. It normally works with a default set of rules, which implicitly disallows forward slash (but this
can be explicity allowed with al | ow=>' /'). Similarly white space can be removed from a file name
when required using the deny option.

Availability

makedbsaf e isavailable in both php and perl. This function was added in Wacs 0.8.1.

61

WACS API: Core Module

Name
addheadercss — prints out the header cascading style sheet preamble

Synopsis
use Wacs,
addheader css(css_preanbl e_type);

scal ar css_preanbl e_type;

Summary

The addheader css prints out the required css preamble to support the appropriate pull down menu
system. At present only one type, "csshoriz" is recognised, but additional options can be added.

Availability

addheader css isavailable in both perl and php.

62

WACS API: Core Module

Name

setgroupperms — set group permissions to allow both command line and web management of sets.

Synopsis
use Wacs,

set groupperns(...);

Parameters
parameter description
target pathname of the file or directory to update
group the unix group to set permissions to (usually wacs, can be obtained with
conf_get attr onsecurity ->adm ngroup.
mode access mode that should be set - typically ug+r wx.
Summary

Theset gr oupper s function setsthe group permissions on the specified fileto allow updating by both
command line tools and the web interface. This is typically done by making all files group-writeable to
thewacs group of which both apache and the approved WA CS administrative users should be members.

Availability

set gr oupper ns isavailableonly in perl asit is used only for collection management tasks.

63

WACS API: Core Module

Name

treemkdir — Makes a descending tree of directories (equivalent to the mkdir -p command) which includes
callsto setgroupperms.

Synopsis
use Wacs,

treenkdir(...);

Parameters
parameter description
origin The toplevel directory from which to start - thisisrequired to already exist.
path The path below the toplevel directory given above to be created (or partialy
created as necessary)
Summary

Thet r eenkdi r functionistheequivalent of the-p option to themkdir command which isnot supported
by theinternal mkdir call of perl. It makes each element of the path it is asked to makeif it does not already
exist. Thisis part of the effort to reduce the dependency on the system call to unix shell commands within
WACS. Each directory created has it's permissions set using set gr oupper 1rs.

Availability

t reenkdi r isavailableonly in perl asitisused only for collection management and infrastructure tasks.

Chapter 8. WACS API: User Interface
Module

User Interface Module: Summary

Table 8.1. Function Summary: User Interface Module

function description

describeher tries to make a sensible sentance out of model data
whatshedoes describes the kind of sets this model appearsin
addkeyicons makes alittle HTML table with the attribute icons
addratings makes alittle HTML table with the set ratings

iconlink build alink around the icon for this set

addlinks add standard top-of-the-page menus

alsofeaturing find and list any other models featured in this set
read_menu read the XML menu files and create menu record structure

menu_get_default

get the default link for the menu title

menu_get _title

get the menu title itself

menu_get_body

get the body of the menu

menu_get_entry

get asingle entry from the menu

menu_get_handler

get the webapps name to handle a datatype

User Interface Module: Reference

65

WACS API: User Interface Module

Name

describeher — tries to make a sensible sentance out of model data
Synopsis

use Wacs,
use WacsUl;

scal ar describeher(...);

Parameters

parameter description

name Her name

hometown Where she says she's from - might be place of birth or current home

country The country she comes from

age Her reported age

ageyear The year in which that age was given

hair The colour of her hair

length Thelength of her hair

titsize The size of her breasts

cupsize The cupsize of her breastsif known

pussy The usua style of her pubic hair

race Her race (in broad terms)

eyes The colour of her eyes

distmarks distingishing marks - easy ways to recognise her

build her phyiscal build/body type

height her height in centimetres (NB: field not suitable for imperial values)

weight her weight in kilograms (NB: field not suitable for imperia values)

vitbust her bust measurement in centimetres

vitwaist her waist measurement in centimetres

vithips her hips measurement in centimetres

occupation her occupation (if stated)

aliases other names she's known by

bio any additional biography text

units override configuration file when giving units: imperial or metric
Summary

Thedescr i beher triesto make areadable biography entry out of thevariousmodel attribute parameters
inthe nodel table. The result isreturned as a string.

66

WACS API: User Interface Module

Availability

descri beher isavailablein both perl and php. The fieldsnanme, honet own, country, age,
ageyear, bioandunits wereaddedin WACSO0.8.2.

67

WACS API: User Interface Module

Name
whatshedoes — describes the kind of setsthis model appearsin

Synopsis
use Wacs,

use WacsUl;

scal ar what shedoes(...);

Parameters
parameter description
solo does she featurein solo sets (Y, N)
straight does she feature in straight sets (Y, N)
lesbian does she feature in leshian sets (Y, N)
fetish does she feature in any sets flagged as fetish
toys does she use toysin any of her sets
masturbation does she masturbate in any of her sets
other does she do any activites marked as other
Summary

Thewhat shedoes function takes the truth values for doing certain kinds of activities and makes it into
a descriptive sentence which is returned as a string.

Availability

what shedoes isavailable in both perl and php.

68

WACS API: User Interface Module

Name
addkeyicons — makes alittle HTML table with the attribute iconsin

Synopsis
use Wacs,
use WacsUl;
addkeyi cons(list_of _attribute_keywords, icon_size);

scal ar list_of _attribute_keywords;
scal ar icon_size;

Summary

The addkeyi cons function takes a space seperated list of attribute keywords such as the sets table
scat i nf o field or themodelstablemat t r i but es field and prints out the associated iconsin a small
HTML table. It scalestheiconsto the specified sizein doing so.

Availability

addkeyi cons isavailable in both perl and php.

69

WACS API: User Interface Module

Name
addratings — makes alittle HTML table with theratingsiconsin

Synopsis
use Wacs;
use WacsUl;

addratings(...);

Parameters
parameter description
overall The overall rating for the set (1 to 5)
variety How unusual the content or action of the set is
techqual The technical quality of the photography, lighting and set
size How big the icons should be: normal or small
orientation whether the table should be vertical or horizontal
title display title on table: y for yes, n for no.
Summary

Theaddr at i ngs functionissimilar to addkeyi cons inthat it outputs an HTML table with iconsin.
Inthiscaseg, it'stheratingsiconsfor each of the three main set ratings: overall, variety and techqual. It can
display the table in two sizes, with or without atitle and in a horizontal or vertical orientation.

Availability

addr at i ngs isavailablein both perl and php. This function was introduced in Wacs 0.8.1

70

WACS API: User Interface Module

Name

iconlink — build alink around the icon for this set
Synopsis
use Wacs,

use WacsUl;

iconlink(...);

Parameters
parameter description
type set typevalue (1, V, etc)
Setno The set number
sarea The toplevel area of the set
scategory The middle level area of the set
sdirectory The lower level area of the set
model The model's name - used in the alt tag in the images
resize Whether to resize or not - 0 is actual size, 1 is rescaled to standard size, 2 is
rescaled to mini size
destloc Which configuration variableto usefor location of link destination application
- typically cgiurl for perl scripts, siteurl for php scripts, or wacsurl for wacs
GUI elements (like glyphs, javascript files or stylesheets)
destapp The stem of the URL to link to around the icon, something like wacsindex/
page, needs to include any parameter introducers like page or seti d=
destext The extension of the URL to link to, or null, ie .html or .php
Summary

Thei conl i nk function displays the icon for a set at the requested size surrounded by an appropriate
link to the set concerned.

Availability

i conl i nk isavailablein both perl and php. Thedest | oc, dest app anddest ext optionsare only
availablein 0.8.1 or later.

71

WACS API: User Interface Module

Name

addlinks — add standard top-of-the-page menus

Synopsis

use Wacs,

use WacsUl;

addl i nks(. ..

Parameters

par ameter

description

myname

name of the calling program

context

general area of the current page: possible values are nodel i ndex,
nodel s, search, tags, new nmage, newi deo oradmnin

title

Title of the menu (not currently used)

exclude

name of link to exclude (normally this apps name so it doesn't link to itself

mode

menu mode: either nor mal for old-style smpletop linemenu or csshori z
to use javascript pull down menus

options

optional parameter list (array)

optdesc

matching descriptions for the above

Summary

Theaddl i nks functionisageneralised interface to adding atop of the page menu - you specify ageneral
category into which the pageyou'rewriting falls, and it adds an appropriate sel ection of the standard menus.

Availability

addl i nks has been available in perl for sometime and was newly added to the php implementation in
Wacs release 0.8.4. In general, unless you're trying to create a php app that blends in with the standard
Wacstools, you'll probably want to use your own menu mechanism when using PHP.

72

WACS API: User Interface Module

Name
alsofeaturing — look for any other models also featuring in this set

Synopsis
use Wacs,

scal ar al sofeaturing(...);

Parameters
parameter description
Setno The set number of this set
primary The model number we already know about for this set; exclude thismodel from
the results. Leave blank if you want all models listed.
staysmall stay inasmall font - if thisisset to Y font change specifications will not cause
asize change.
destloc thelocation of the destination application for thelink. Thisdefaultstocgi ur |
but can be baseur | or any of the url configuration values.
linkto which wacs application to link to (assumed to bein cgi-bin). If thisendsin an
equals sign (=) no slash will be added between the application name and the
modelno. This allows modelno= and L= style arguments.
skipbr tellsthe function not to output HTML breaks around the output it creates. This
canbefirst orall asrequired.
dbhandle current handle to the database connection
Summary

The al sof eat uri ng function returns a list of models featured in this set along with links to an
appropriate WACS application.

To aid CSS styling there is a span directive with aclass of al sof eatti t| e around the Featuring or
Also Featuring title output, and another with aclassof al sof eat nodel around each model link output.

Availability
al sof eat uri ng isavailablein both perl and php (from release 0.8.5); only in perl in the releases prior

tothat. It was moved to WacsUI in release 0.8.5 from the core Wacs module. Theski pbr anddest | oc
parameters were added in Wacs release 0.8.5.

73

WACS API: User Interface Module

Name

read_menu — read the XML menu files and create menu record structure
Synopsis

use Wacs,

use WacsUl;

read_nenu(nenu_fil enamne);

scal ar nmenu_fil enane;
Summary

The r ead_menu reads the specified menu XML file into the internal data structures of the wacsui
object. It should be called before using any of the other menu routines. For the standard system menus,
the collection management tools use the file nenu. cf g in the wacs config directory (usualy / et ¢/
wacs. d). You can edit the standard menu file to add your own additional menu definitions for use in
specific applications. If your application wishes to use an aternate namespace, you could specify an
alternate menu config name, something likenysi t e. cf g and also placeit in the wacs config directory.

Availability

r ead_nenu isavailable in both perl and php.

74

WACS API: User Interface Module

Name
menu_get_default — get the default link for the menu title

Synopsis
use Wacs,

use WacsUl;

scal ar nmenu_get default(...);

Parameters
parameter description
name the menus name; typically in lower case (eg navi gati on)
caller name of the calling application
exclude applications to exclude from menus; typically the calling application itself
options an array of optionsto be substituted.
optdesc amatching array of descriptions
Summary

The menu_get _def aul t returns the default link for the top-of-the-page menu title before the menu
pull-down is activated. Normal substitutions are applied to this option if specified.

Availability

nmenu_get _def aul t isavailablein both perl and php.

75

WACS API: User Interface Module

Name
menu_get_title — get the menu title itself

Synopsis
use Wacs;
use WacsUl;

scal ar menu_get title(...);

Parameters

parameter description

name Name of the menu whose title you want
Summary

Thenmenu_get _titl e function returnsthe readabletitle for the specified menu. Thisistypically what
the link address returned by menu_get _def aul t will surround.

Availability

nmenu_get _titl eisavailablein both perl and php.

76

WACS API: User Interface Module

Name
menu_get_body — get the body of the menu

Synopsis
use Wacs,

use WacsUl;

scal ar menu_get body(...);

Parameters

parameter description

name name of the menu concerned

caller name of the program calling it

exclude name of program to exclude from menus

options array of optionsto use

optdesc array of matching descriptions for the options above

isarea hashref/array of image-based sarea values

vsarea hashref/array of video-based sarea values

mflags hashref/array of model flags

vsites hashref/array of vendor codes and names

pre prefix for generated entries(eg <l i ><a href=\")

intra middle section for generated entries (eg\ " >)

post postfix for generated entries (eg </ a></ i >)
Summary

Thenenu_get _body function returnsabig string containing the HTML formatted body of the requested
menu. Using the pre, intra and post parameters you can include the correct entry pre-amble, mid-section
and tail-section for your desired menu layout.

Availability

nmenu_get body isavailable in both perl and php.

7

WACS API: User Interface Module

Name

menu_get_entry — get a single entry from the menu

Synopsis

use Wacs,

use WacsUl;

scal ar menu_get _entry(...);

Parameters

par ameter

description

name

name of the menu concerned

caller

name of the program calling it

entry

hashref/array of the current entry object from menu tree

options

array of optionsto use

optdesc

array of matching descriptions for the options above

isarea

hashref/array of image-based sarea values

vsarea

hashref/array of video-based sarea values

mflags

hashref/array of model flags

vsites

hashref/array of vendor codes and names

pre

prefix for generated entries(eg <l i ><a href=\")

intra

middle section for generated entries (eg\ " >)

post

postfix for generated entries (eg </ a></ i >)

Summary

Themenu_get _ent ry takes an individual menu entry (which may result in multiple menu entry lines)
and processes it into a string that is returned. It is available seperately as it can be called with custom
parameters via options and optdesc to do specific non-standard parameters. All the usua substitions are
availableincluding aspecia one called #NEWPERI OD# which provides atext representation of the current

value of thel ayout - >newper i od variable.

Availability

nmenu_get _ent ry isavailablein both perl and php. The #NEWPERI CD# functionality was introduced
inWACS0.8.5.

78

WACS API: User Interface Module

Name
menu_get_handler — get the webapps name to handle a datatype

Synopsis
use Wacs,

use WacsUl;

scal ar nmenu_get _handler(...);

Parameters
parameter description
for The type of data thisis a handler for; usually this will be the table name, eg
nodel s but it can be any arbitary name.
options Thisisthe primary key to be passed to the application specified in the lookup.
Summary

Thenmenu_get _handl er functionisthere primarily to let you find the applications that mesh best with
the menu tree currently being used. Y ou passto the function the table or activity name and the primary key
(or other lookup parameter) and it will return the preferred application to handle that type of link for this
menu/look and feel in use. If the menu configuration file does not include a specification of the handler for
any of the standard database tables, the default Wacs application will be given as the reply. A null reply
will be indicated by a single character reply of just the hash character.

Some Common Names

mainmenu

models

photographer

preferences
slideshow

Availability

nmenu_get _handl er isavailable from Wacs 0.8.5 onwards in both perl and php. It was not available
prior to this release.

79

Chapter 9. WACS API: Standard
Components Module

Standard Components Module: Summary

Table 9.1. Function Summary: Standard Components Module

function description

masthead creates a top-of-the-page summary for any page handling set

modelheads adds the icons with links for model(s) specified

findmodel creates atable and choice box for models with a given name

findrecentsets creates rowsin atable managed form with pull-down menus containing details
of recently added sets

findrecentmodels creates rowsin atable managed form with pull-down menus containing details
of recently added models and a search box to befed to f i ndnodel

model headshot creates amodel headshot icon and basic info table contents

getgallery work out the next available gallery slot when in gallery layout mode

kwscore reset resets the keyword scoring system back to defaults

kwscore_process process the provided string looking for keywords

kwscore get get the specified result from the processing of the strings provided previously

removedups remove duplicates from an attribute string

removeconflicts remove items that contradict the set attributes from the model attributes

addassoc Add a new model/set association record

aloc_nextkey Work out the next primary key value for the specified database table

Standard Components Module: Reference

The WacsStd module contains standard components for building the standard WACS collection
management tool interface. Sinceall thesetoolsarewrittenin perl, thismoduleisonly implementedin perl.

80

WACS API: Standard
Components Module

Name
masthead — top of page banner for set-based apps

Synopsis

use WacsStd;

mast head(...);

Parameters

parameter description

Setno The set number

stype The set type (single letter database format)

scatinfo The attributes for the set

scatflag The set type flag (single | etter database format)

stitle The assigned set title, aka standard description

sofftitle The official title (usually from origina site)

sarea Toplevel directory entry

scategory Middle level directory entry

sdirectory lowest level - actual holding directory (filename for videos)

simages Number of imagesin the set

sindexes Number of index images for the set

saspect aspect ratio (mainly for videos)

sformat file format for this set (.jpg, .png, .mov, .wmv €tc)

sdurhrs video or DVD scene duration - hours value

sdurmin video or DVD scene duration - minutes value

sdursec video or DV D scene duration - seconds valus

sphotog photographer reference code (references pref in photographer)

sfoundry organisation where the set came from

modelno associated model number

downloadno associated download record number

useicon when working with a set number 0, attempt to get an icon by asking for a
thumbnail of the first image

addlinks add set browsing links to the masthead centre section

width make the masthead table the specified width only

dbhandle the current database handle object

Summary

mast head generatesastandard top-of-the-page banner heading for any pagethat isintended to document
or amend a standard set record. It does a best efforts with whatever fields it has passed to it.

81

WACS API: Standard
Components Module

Availability

nmast head isonly available in Perl.

82

WACS API: Standard
Components Module

Name

model heads — adds the icons with links for model(s) specified
Synopsis

use WacsStd;

nodel heads(| ookup_net hod, set nunber, dbhandl e);

scal ar | ookup_net hod,;
scal ar set _nunber;
scal ar dbhandl e;

Summary

The nodel heads function was originally written as part of the implementation of mast head but has
broader uses. It provides a table of a model (or group of models) headshots with ratings and name. The
| ookup_net hod can be one of byset (whereit's the models featured in the specified set number) or
byno (where the second argument is the model number rather than the set number). The default option
in other cases is any models who've been added today - it is recommended you specify bydat e and pass
the date for this option.

Availability

nodel heads iscurrently only availablein perl.

83

WACS API: Standard
Components Module

Name

findmodel — creates a table and choice box for models with a given name
Synopsis
use WacsStd;

use WacsUl;

findnodel (...);

Parameters
parameter description
mname the model name or beginning of the nameto look for
offeralt Whether to offer an alternative choice or not: y or n
offervalue What the value returned for the alternative should be, eg next
offercapt What the caption for the alternative value should be
incsubmit Whether to include a submit button or not: y or n
dbhandle pointer to the currently active database handle
cgihandle pointer to the currently active CGI object

Summary

The f i ndnodel function takes the name of a model and searches the database for who it might
concievably be. It checkes the model's name, her aliases and the name from each of her ID map entries.
It presents a headshot, description, and aradio button to allow her to be choosen. It can optionally offer
an additional radio button for another purpose. The choosen model's number or next will be returned in
aCGl variable called nodel no.

Availability

fi ndnodel isonly availablein perl at thistime

WACS API: Standard
Components Module

Name

findrecentsets— createsrowsin atable managed form with pull-down menus containing detail s of recently
added sets

Synopsis
use Wacs,

use WacsStd;

findrecentsets(...);

Parameters
parameter description
offset the number of days in the past to consider as recent. Defaults to the current
value of | ayout - >newper i od if not specified.
default the default value for the set number if known.
dbhandle pointer to the currently active database handle
cgihandle pointer to the currently active CGI object
Summary

Thef i ndr ecent set s function createsrowsin atable managed form with pull-down menus containing
details of recently added sets. The method selected by the user for specifying their response will be stored
in a CGl variable called set met h which will have a value of one of speci fy, i mage or vi deo. If
their responseisspeci fy the setho will bein a CGl variable called spec_set no. If their responseis
i mage thesetnowill beinaCGl variablecaledr ecent _i mg andfor vi deo it'll beinr ecent _vi d.

Availability

findrecent set s isonly availablein perl at thistime. This function was introduced in WACS 0.8.5.

85

WACS API: Standard
Components Module

Name

findrecentmodels — creates rows in a table managed form with pull-down menus containing details of
recently added models and a search box to befed to f i ndnodel

Synopsis
use Wacs,

use WacsStd;

findrecentnodel s(...);

Parameters
parameter description
offset the number of days in the past to consider as recent. Defaults to the current
value of | ayout - >newper i od if not specified.
default The default model number if known.
dbhandle pointer to the currently active database handle
cgihandle pointer to the currently active CGI object
Summary

The fi ndr ecent nodel s function creates rows in a table managed form with pull-down menus
containing details of recently added models and a search box to be fed to f i ndnodel . The method
selected by the user for specifying their response will be stored in a CGI variable called nodnret h which
will have oneof thesevalues: speci f y,r ecent orsear ch. If their responseisspeci f y themodelno
will bein a CGI variable called spec_nodel no. If their response isr ecent , the modelno will be in
a CGl variable caled r ecent _nod. If the value is sear ch the findmodel function should be called
passing the CGlI variable sear ch asthe rmare parameter.

Availability

fi ndrecent nodel s isonly availablein perl at thistime. Thisfunction wasintroduced in WACS0.8.5.

86

WACS API: Standard
Components Module

Name
model headshot — creates a model headshot icon and basic info table contents

Synopsis
use Wacs,

use WacsStd;

nodel headshot (...);

Parameters
parameter description
modelno The model number - that is our model number for her.
name The model's name that we're looking for - thusif we know the model as Jedda,

but know she's known as Jana el sewhere, we'd put Jana here to build up alink
along the lines of "Known as Janaat KPC" in the id description field.

howcome How we came by this model - this can be S as the result of a name search or
I if we'redisplaying her ID details for a specific site.

where The site id or short name for where we found this model called this name
key The model's key on the site we're talking about if specified.
dbhandle pointer to the currently active database handle

Summary

The nodel headshot is used to produce a basic headshot accompanied by name, attribute icons and
optionally details of her identity on a given site. It is a component used in the f i ndnodel function but
directly exposed since Wacs 0.8.4 to allow it's use in other places too.

Availability

nodel headshot isonly availablein perl at thistime.

87

WACS API: Standard
Components Module

Name

getgallery — get the next available slot in the named gallery

Synopsis

use WacsStd;

scal ar getgallery(...);

Parameters

parameter

description

which

Specifies which area to substitute in - can be either scategory (middle level)
or sdirectory (lower level).

stype

stype of the set concerned: typicaly | for image set, V for video.

sarea

Top level areain which to search for the next available gallery slot

scategory

The middle level directory entry (can be either smply specified or the subject
of the substitution). This should include the variable pattern given in substitute
below, asingal | er y#NEXT#.

sdirectory

Thelower level directory entry (if needed, otherwise blank).

substitute

The string to be substituted with the value determined by theroutine. Typically
this will be something like #NEXT#.

dbhandle

The Perl DBI handle to the current database

Summary

The get gal | ery function returns the appropriate string for the next available slot in the galery in
the specified section. It can return either an scategory or sdirectory variable as requested via the which
parameter. It is used to work out the placement of new setswithin agallery structure. What the next usable
galery isisdetermined by reference to thel ayout attribute set sper gal | ery inthe configuration
file or the default value (usually 20) if not specified. Please see the configuration manual for more details
on this configuration attribute.

Availabilty

Asacollection administration function, get gal | ery isonly availablein perl.

88

WACS API: Standard
Components Module

Name
kwscore reset — resets the keyword scoring system back to defaults

Synopsis
use WacsStd;

kwscore_reset (scope);

scal ar scope;

Summary

The kwscore_reset function resets the currently built attributes table. It is possible to run the
kwscore_process function severa times with different fields from the database and so it does not
naturally reset the internal table of results - this call provides that facility and should always be called
before each new set to consider. The scope parameter is currently ignored but may in future modify the
behaviour.

Availability

As keyword scoring is a collection administration activity, it is currently only implemented in perl.

89

WACS API: Standard
Components Module

Name

kwscore_process — process the provided string looking for keywords

Synopsis

use WacsStd;

kwscore_process(...);

Parameters

parameter

description

string

the string to be processed against the keyword database

dbhandle

the database session object pointer

Summary

The kwscor e_process function allows you to submit a string to the keyword scoring system for
consideration. It's scoreswill be stored allowing both retrieval of results and modification of those results
by subsequent invocation of the kwscor e_pr ocess with alternative strings. It is perfectly possible
to consider both the title (field st i t | e) and the official title (field sof fti t | e) if that is appropriate.

It could also be run on the description of the set if that is present.

Availability

As a collection administration function, kwscor e_pr ocess

90

iscurrently only availablein perl.

WACS API: Standard
Components Module

Name
kwscore _get — get the specified result from the processing of the strings provided previously

Synopsis
use WacsStd;

kwscore get(...);

Parameters
parameter description
what which result you are requesting: valid onesare: cat, | oc, det, attr
or ot her.
default adefault value you want returned if nothing is found for this request
Summary

The kwscor e_get function retrieves the results from any kwscor e_pr ocess calls made since the
last kwscor e_reset. The what argument specifies what to return:- cat returns a category flag
(scat fl ag etc.),| oc returnsalocation (sl ocat i on),det returnsadetailedlocation (sl ocdet ai | ,
at tr returnsthe attributes (scat i nf o and ot her isavailable for future expansion.

Availability

As acollection administration function, kwscor e_get iscurrently only available in perl.

91

WACS API: Standard
Components Module

Name

removedups — remove duplicates from an attribute string

Synopsis
use WacsStd;
scal ar renovedups(raw attribute list);

scalar raw attribute_list;

Summary

Ther enpbvedups function removes any duplicate entries from a space-separated list of attributes - this
is typically necessary when merging more than one source of attribute information like that from the
kwscor e_get functionand theresult of fetching model attributes. Pleasealso seer enpveconflicts
function below.

Availability

As acollection administration function, r enovedups is currently only available in perl.

92

WACS API: Standard
Components Module

Name

removeconflicts — remove items that contradict the set attributes from the model attributes
Synopsis
use WacsStd;

scal ar renoveconflicts(...);

Parameters

parameter description

model The model's attributes (mat t r i but es field)

existing The existing combined attributes (ie those taken fromthe set scat i nf o field
Summary

Ther enoveconflicts function is designed to stop contradictory overwriting of mutually exclusive
model attributes - typically those relating to pubic hair trimming, as these can often vary between sets of
the same model. It is provided with the model's attributes plus the existing set attributes - if the existing set
attributes do not include a contradictory value, then the model's attributes areincluded. If there'saconflict,
the model's pubic hair attribute is dropped in favour of that in the set. Thisisusually the correct behaviour.
Thisif amodel isnormally considered to have a shaven pussy, but appearsin a set before she's shaven it
(or even as she does s0), then the set may be marked with the hairy attribute. If that is there, the model's
default of shaven will be removed and only her other attributes (tattoos, piercings, etc) will be imported.

Availability

Asacollection administration function, r enoveconf | i ct s iscurrently only available in perl.

93

WACS API: Standard
Components Module

Name

addassoc — add a new association record connecting a model with a set
Synopsis
use WacsStd;

scal ar addassoc(...);

Parameters
parameter description
setno the set number to be associated with amodel (see below)
modelno the model number to be associated with the above set
asstype the type of the association - currently only G for general but this might be
changed in the future - see the schemareference for theassoc table for more
information.
dbhandle The open database handle for use in querying the database
Summary

The addassoc function is designed to add association records between sets and models. To do this it
creates a new record in the assoc database table using the next available primary key for that table. To
call addassoc you need to provide a set number, a model number and a dbhandle to a currently open
database session. Optionally you may also provide an association type although currently only one type,
Gfor general isdefined in the WACS database dictionary. addassoc protects against adding multiple
associations between the same model and set.

Availability

As acollection administration function, addassoc iscurrently only availablein perl.

94

WACS API: Standard
Components Module

Name

alloc_nextkey — allocate the next new unique primary key for the database table specified

Synopsis

use WacsStd;
scal ar al |l oc_nextkey(tabl e _nanme, prinmary_key fieldnane, dbhandle);
scal ar tabl e_nane;
scal ar primary_key fi el dnane;
scal ar dbhandl e;
Parameters
parameter description
table_name The name of the table in the Wacs database schema for which the new key

should be allocated, eg set s, nodel s or assoc.

primary_key fieldname | The name of the primary (unique) key to that database table.

dbhandle

The open database handle for use in querying the database

Summary

Theal | oc_next key function simply returns the next available value for creating a new record in the
specified table. It's rather simplistic and can be caught out by race conditions, but it mostly gives you a
valid numeric primary key for the table concerned.

Availability

Asacollection administration function, al | oc_next key iscurrently only availablein perl.

95

Chapter 10. WACS API: Identification
Module

Identification Module: Summary

Warning

The existing identification module has many flaws and it is intended to massively overhaul
it in the near future. We would not recommand utilising functions from this module at the
present time. If you need a particular routine listed here, please contact us and we'll consider

moving it to one of the more stable modules if appropriate

Table 10.1. Function Summary: Identification Module

function description

ident_img Identify characteristics of an image set from download info
ident_vid Identify characteristics of avideo clip from download info
reset_attr reset the global attribute table

id_get flag get previously determined flag (run ident_* first)
id_get_info get previously determined catinfo (run ident_* first)
id_get_photog get previously determined photographer (runident_* first)
id_get_dnldno get download record number

id_get_modelno get the model number

id_get_modelname

get the model's name

id_get_vendor get the vendor reference

id_get_dbhandle get the current DB handle

id_get_key get the current modelsid at the current vendor
id_get_setkey get the set key at the current vendor

id_get_sethname get the name of the most recent set

id_get_status get the status of the most recent set

id_get_notes get the current value of the notesfield

id_get_setno get the current value of the setno field

id_mpage process a model page looking for links to suitable sets
chk_vid_type check to seeif thisurl isavideo file type
chkid_existing check to seeif we already have a model with thisidmap

96

Part lll. WACS Database Schema

Thisis the Database Schema Reference Manual, or data dictionary, for the WACS environment. This documents the
database tables in use, their contents, structure, relationships and assigned values.

The WACS database schemas are built with the convention that the first letter of the schema name is prefixed to all
fields within that schema. Thus afield from the sets schemawill start with the letter s, afield from the assoc schema
will start with the letter a and so on. Generally relationed fields will have fundamentally the same name, such that the
set number isset no in the sets schema, aset no in the assoc schema, t set no in the tags schema, dset no in the
download schema, and so on. This makes performing relational joins much easier and more portable since one can
do the likes of wher e anpdel no = nodel no without any ambiguity and without having to specify the table
name explicity.

Where possible fields with alimited set of possible values will be single character fields with a reasonably neumonic
value for each possible value. Thus the mediatype (st ype, dtype, etc)isV for Video Clip, | for Image Set, D
for DVD scene, and so on. A lookup hash of the legal values will typically be available for programmers to use from
the core Wacs module (see the Part 11, “WACS APl Programming Reference” for more details).

Chapter 11, Schema Reference: Sets
Chapter 12, Schema Reference: Assoc
Chapter 13, Schema Reference: Idmap
Chapter 14, Schema Reference: Models
Chapter 15, Schema Reference: Download
Chapter 16, Schema Reference: Photographer
Chapter 17, Schema Reference: Tag
Chapter 18, Schema Reference: Vendor
Chapter 19, Schema Reference: Conn
Chapter 20, Schema Reference: Keyword
Chapter 21, Schema Reference: User
Chapter 22, Schema Reference: Attrib
Chapter 23, Schema Reference: Notes

Chapter 11. Schema Reference: Sets
Sets: Schema SQL

Warning

. WACS 0.8.5 contains a significant number of additions to this schema ahead of the shift to
the 0.9.x release series. None of these changes are used or accessed by applicationsin Wacs
0.8.5, so you can defer updating the Schema until Wacs 0.9.0 comesout if youwishto. There
will be atool to update the schema supplied with Wacs 0.9.0. The newly added and currently
not used fields are those in bold typeface.

create table sets

(setno nunber (9) primary key,
stype char (1) not null
sst at us char (1) not null
srank char (1),
sauto char (1),
srating char (1),
sflag char (1),
st echqual nunber (2),
svariety nunber (2),
svisits nunber (2),
sf or mat var char 2(10),
scodec var char 2(40),
stitle var char 2(240),
sofftitle var char 2(240),
sof ficon var char 2(160),
saddi con var char 2(160),
shane var char 2(80),
shair var char 2(80),
snodel no var char 2(40),
sl ocation var char 2(20),
sl ocdet ai | var char 2(40),
sattire var char 2(20),
sfocus char (1),
sphot og varchar 2(6) references photographer
ssource var char 2(80),
sfoundry var char 2(80),
sproddat e dat e,
srel date dat e,
suscattr char (1),
snot es var char 2(240),
sdesc var char 2(2048),
si ndexes nunber (6),
si mages nunber (6),
sdur hrs nunber (2),
sdurmin nunber (2),
sdur sec nunber (2),
sl andx nunber (6),

98

Schema Reference: Sets

sl andy
sportx
sporty
saspect

sf ps
sinter

sski pfr
sbytes
sdvdno
sdvddi sc
sdvdtitle
sdvdst artch
sdvdendch
si dl ogo
serrors
sdupl i cates
sal t medi a
snext
sprev

sset pos
scatinfo
scatfl ag
snanest em
sdownl oad
sarea

scat egory
sdirectory
scomment s
sadded
sanended

Note

nunber (6),

nunber (6),

nunber (6),

var char 2(10),
nunber (6),

char (1),

nunber (9),

nunber (12),
nunber (6),

nunber (2),

nunber (3),

nunber (3),

nunber (3),

char (1),

char (1),

nunber (9) references
nunber (9) references
nunber (9) references
nunber (9) references
nunber (2),

var char 2(160),

char (1),

var char 2(80),

var char 2(160),

var char 2(160),

var char 2(160),

var char 2(240),

var char 2(240),

dat e,

date

sets,
sets,
sets,
sets,

sattire isanew field introduced into the schema in release 0.8.1; it came into use in
WACS0.8.2. It is currently scored using the other attribute of the keyword system, thiswill
changeto using ki wear in WACS0.9.0.

Tip

The new fields introduced in WACS 0.8.5 are sr ank, sf ocus, sal t nedi a, snext,
sprev and sset pos. Additionally referential integrity is now enforce for sduplicates
which shouldn't cause a particular problem if it's been used correctly.

Sets: Defined Values

Table 11.1. stype: Type of Set: defined values

stype

Image Set

\Y

Video Clip

99

Schema Reference: Sets

stype
A Audio File
S DVD Scene

Table 11.2. sstatus: Status of Set: defined values

sstatus

M Manually Added, Details Not Checked

A Automatically Added, Details Not Checked
N Normal - Checked

G Good - Thoroughly Checked

U Unknown

Table 11.3. sauto: Automatic Update of Set Allowed?: defined values

sauto

N None (no auto updates)

L (on-disk) Location only - all attributes manual
A Append only - all existing entries stay

F Fully auto-generated - all values can change

Table 11.4. srating: Overall Rating For The Set: defined values

srating

Finest

Very Good

Good

Reasonable

Mediocre

Ol RPN WA~ O

None Specified

Table 11.5. stechqual: Technical Quality Rating For The Set: defined values

stechqual

5 Finest - HD Video done well, Multi-megapixel stills

4 Very Good - Well lit SD or good HD Video, good megapixel + stills

3 Good - Well done low-res SD, good sub-megapixel stills; not quite so good
but higher res

100

Schema Reference: Sets

stechqual

Reasonable - either very small, or bad equipment (flash on camera) used
moderately well

Mediocre - lack of skill, bad equipment, poor composition

None Specified

Table 11.6. svariety:

Unusualness Rating For The Set: defined values

svariety

Very Unusua - look at the set scenario and think "What the F***1"

Unusual - unusual and very interesting - "Wow"

Neat - interesting and impressive but not quite "Wow"

Cute Twist - adlightly unusual twist, unusual pose etc

Ordinary - can still score very highly in overall and tech

Ol RPN W| A~ O

None Specified

Table 11.7. sformat:

Format of the File(s) In The Set: defined values

sformat

JPEG JPEG image

GIF GIF image

PNG PNG image

PNM PNM,PBM,PGM,PPM image

WMV Windows Media Player Video

AVI AV1 Video (codec specified separately)

QT QuickTime .mov Video (codec specified separately)
MPEG MPEG Video (MPEG-1 or 2)

Table 11.8. sidlogo: Presence of Burnt-in Logo: defined values

sidlogo

U Unknown

Y Y es - image/video has burnt-in logo
N No - image/video is clean of bugs

Table 11.9. sinter: Progressive or Interlaced Video Structure

sinter

Video has interlaced frame/field structure

101

Schema Reference: Sets

sinter

Video has progressive frames (atomic)

Table 11.10. serrors: Presence of Known Errors; defined values

serrors

N None detected

F Fixed - faulty imagesivideo have been fixed - Quality may have been
compromised - sizes/signatures no indicative of original

E Encoding Only - causes message but renders OK

C Some Corrupt Images/Segments of video

Table 11.11. scatflag: Generalised type of the set: defined values

scatflag

Fuck - straight sex

Lesbian - leshian sex

Group - more than two people having sex, mixed-gender

Toy - Solo but uses toys such as dildo, vibrator, etc

Solo - Model on her own (possibly with a non-participatory audience)

Masturbation - Solo but includes masturbation activities

None - not determined yet

Backstage - Behind The Scenes set featuring this model

Clothed - non-nude set featuring this model

Oo0olmZZnd oM

Duplicate - duplicate set - maybe from a different site - DEPRICATED

Table 11.12. slocation: generalised description of locations: recommended values

slocation (recommended values)

Note

Thisisa Recommended Values list only; additional values can be added as appropriate

Balcony Balcony or Terrace; outdoors but not part of Garden
Bathroom Bathroom, Toilet or Shower Cubicle

Bedroom Bedroom or other sleeping area

Country Country - including Beach, Forest, and Fields
Dining Room Dining Room or Eating Area

Garden Garden or other private outdoor area

Hallway Hallway, Staircase or Entrance

102

Schema Reference: Sets

slocation (recommended values)

Kitchen Kitchen or Kitchen area of apartment

Laundry Laundry, Cleaning or Utility Area

Lounge Lounge, Sitting Room or Other Seating Area

Office Office, including Home PC desk

Other Room Any other room - (Domestic) Library, Junk Room, Garage, etc

Specialised Specialised Location: Swimming Pool, Shop, Recording or TV Studio,
Factory, Railway Station, etc; additional details can be placed in slocdetail.

Sports L ocation associated with Sports and Exercise: Gym, Locker Room, etc.

Studio White or other plain background Photographic Studio - but NOT Television or

Audio recording studios as a feature of the set theme

Table 11.13. sattire: generalised description of model's clothing: recommended

values

sattire (recommended values)

Note

Thisisa Recommended Valueslist only; additional values can be added as appropriate

Business A tidy business suit or other combination appropriate to an office environment.

Casual A pretty general category - jeans, denim skirts, summer dresses

Elegant Particularly stunning dresses or formal evening wear.

Fantasy Fantasy costumes of all sorts.

Glamourous A glamourous party dress or similar that is quite risque and is likely to
spontaneously reveal the woman's assets!

Housewear The sort of clothing that is worn casually about the house but not normally in
public.

Hospitality Housemaids and Waitress Uniforms

L aw Enfor cement

Police and Security Guard Uniforms

Medical

Uniforms appropriate to the Medical Industry

Military Uniforms appropriate to the Military Services

Nightwear Pajamas, Baby Doll dresses, Nightshirts

Nothing Nude!

Partial Only partially clothed

Retail Uniforms appropriate to the Retail and other service industries (but not Maids)

Schoolwear Various uniforms associated with Schoolgirls including cheerleaders and gym
dips

Smart Smart or attractive clothes suitable for going to a party without being el egant
or stunning.

Sports Sportswear - track suits, sports bras, cycling ouitfit, etc

Swimwear Bikinis and other swimming costumes

103

Schema Reference: Sets

sattire (recommended values)

Underwear

Just abraand panties, or similar - BUT does not include atank top plus panties
which with the addition of a skirt or jeans would be presentable outdoor wear.

Table 11.14. suscattr: how to generatethe 18 USC 2257 declar ation: defined values

suscattr

\% Vendor based - use vendor's USC declaration address

P Photographer based - use photographer's address for USC declaration
N Suppress declaration - NOT RECOMMENDED FOR USRESIDENTS
G

Generic - include generic text with all vendor addresses

104

Chapter 12. Schema Reference: Assoc
Assoc: Schema SQL

create table assoc

(assocno nunmber (9) primary key,
anodel no nunber (6) references nodel s,
aset no nunber (9) references sets,
ast at us char (1),
aadded dat e,
aanended dat e

)
Assoc: Defined Values

Table 12.1. astatus; association status; defined values

astatus

M Manually Added

G Generated Automatically

R Relationship entry - not the primary model for this set.

105

Chapter 13. Schema Reference: ldmap
Idmap: Schema SQL

Note

A possible future direction is for thistable to be relationally linked to the vendors table such
thati dmap.isite = vendor.vsite

create table idnmap

(identryno nunber (7) prinmary key,
i rodel no nunber (6) references nodel s,
i status char (1),
isite varchar 2(20) not null
i key var char 2(30),

i al tkey var char 2(30),
i name var char 2(30),
i not es var char 2(80),
iactive char (1),

i changed dat e,

i checked dat e,

i added dat e,

i anended dat e

)
Idmap: Defined Values

Table 13.1. istatus: idmap status: defined values

istatus

M Manually Added

A Generated Automatically

I Imported From Another WACS site

Table 13.2. iactive: model activity status asthisidentity: defined values

iactive

Y Yes - active model (refresh list with auto tools)

D Dormant - no new sets for awhile (don't bother checking)
N No - inactive (id not known)

0] Obsolete - old reference (no longer there)

106

Schema Reference: |dmap

Table 13.3. isite: Some recommended site abbrievations; recommended values

isite (recommended values)

Note

Thisisa Recommended Values list only; additional values can be added as appropriate

ALS AL SScan.com

AMK AMKingdom.com (aka ATK Galeria)

ATE ATKEXxotics.com

ATKP ATKPremium.com

AW AbbyWinters.com

FJ FemJoy.com

IFG infocusgirls.com

JAFN jennyandfriends.net

KPC karupspc.com (aka Karup's Private Collection)
KHA karupsha.com (aka Karup's Hometown Amateurs)
SE sapphicerotica.com

TF teenflood.com

PMET PinkMetallic.com, the WACS Demo site

107

Chapter

14. Schema Reference: Models

Models: Schema SQL

Warning

WACS 0.8.5 contains a significant number of additions to this schema ahead of the shift to
the 0.9.x release series. None of these changes are used or accessed by applicationsin Wacs
0.8.5, so you can defer updating the Schemauntil Wacs 0.9.0 comesout if youwish to. There
will be atool to update the schema supplied with Wacs 0.9.0. The newly added and currently
not used fields are those in bold typeface.

Note

Please notice that the use of metric in the vital statistics is not intended to be a dig at
the imperial measurements, merely that it reliably and consistantly conveys the necessary
information as sensible, manageable integers. Utility functions are planned to make it easier
to convert and update in a future release of WACS. You try writing an SQL query to find
models between 5ft 3ins and 5ft 6ins in height, as compared to between 160 and 168 cms
in height. See what | mean?

create tabl e nodels

(nodel no nunber (6) primry key,
mane var char 2(40) ,
mhai r var char 2(15),
m engt h var char 2(20) ,
nitsize var char 2(10),
ncupsi ze char (1),
nmeyes var char 2(15),
nr ace var char 2(15),
mattri butes var char 2(60) ,
mal i ases var char 2(60) ,
nmdi sting var char 2(80),
musual var char 2(60) ,
m nmage var char 2(80),
nmbi gi mage var char 2(80),
nbodyi mage var char 2(80),
mal ti mage var char 2(80),
net at us char (1),
nrating char (1),
npussy char (1),

m abi a var char 2(80),
nfl ag char (1),
nvi deos char (1),
nsol o char (1),
net rai ght char (1),
m esbi an char (1),
nfetish char (1),
mmast char (1),
nt oys char (1),

108

Schema Reference: Models

not her
mset s
mmi mages
mvi deos
ncountry
mhomet own
nage
nageyear
ncst at us
mvi t bust
mvi t wai st
nvi t hi ps
nbui | d
nmhei ght
maei ght
mdr ess
nmst arsi gn
noccupati on
ncont act
nmbi rt hdat e
monfile
nmagency
mot es
nmbi o
madded
mamended

)

char (1),
nunber (4),
nunber (7),
nunber (4),
var char 2(30),
var char 2(80),
nunber (3),
nunber (4),
char (1),
nunber (4),
nunber (4),
nunber (4),
char (1),
nunber (3),
nunber (3),
nunber (2),
nunber (2),
var char 2(30),
var char 2(80),
dat e,

char (1),

var char 2(80),
var char 2(240),
var char 2(240),
dat e,

date

Models: Defined Values

Table 14.1. mstatus; model record status; defined values

mstatus

A Automatically Added, Details Not Checked
Manually Added, Details Not Checked

N Normal - Checked

G Good - Thoroughly Checked

P Placeholder - Not Real Person

Table 14.2. mrating: model rating: defined values

mrating

5 Finest (included in Q= searches and front page)

4 Very Good (included in Q= searches and front page)

3 Good (not included in Q= searches, included in front page)
2 Reasonable (not included in Q= searches or front page)

109

Schema Reference: Models

mrating
1 Mediocre (not included in Q= searches or front page)
0 None Specified (listed in U= searches)

Table 14.3. mpussy: model's normal pubic hair style: defined values

mpussy

H Hairy

T Trimmed

B Brazilian style shaved - very little hair above clit area

S Shaven - completely

\% Varies (best avoided, try and pick one of above - her usual style)
N Not Specified

Table 14.4. mflag: special marking flag for models: defined values

mflag

S Favourite Solo

L Favourite Leshian

C Favourite Cutie

F Favourite Straight

M Current Featured Model

P Placeholder (not areal person)

Table 14.5. model activitesflags: defined values

model activitiesflags

fieldname ‘possiblevalu&s

Note

Automatically updated by updatestats

mvideos

msolo

mstraight
mlesbian Y - Yes, doesthis; N - No, doesn't do this
mfetish
mmast

mtoys

110

Schema Reference: Models

model activitiesflags

fieldname

possible values

mother

Table 14.6. mcstatus: accuracy of home country field: defined values

mcstatus

C Certain - country of origin stated in bio

I Inferred - from location or other models seen with
G Guess - based on photographer or building style
N None

Table 14.7. mr ace;

race of the model: defined values

mrace

Caucasian Caucasian - European Descent aka White

Oriental Oriental - Chinese, Japanese, SE Asian

Asian Indian Sub-Continent - India, Pakistan, etc

Negroid Negroid - of African Descent aka Black

Aboriginal Aboriginal - indigenous peoples - First Nation, Polynesian, etc
Latina Latin American - aka Hispanic

Mixed Mixed race and others

Table 14.8. mbuild:

body type of the model: defined values

mbuild

Vv Very Slim
S Slim

M Medium
H Heavy

Table 14.9. vital statistics. meanings

vital statistics

mweight Weight in Kilos

mheight Height in centimetres

mvitbust Bust measurement in centimetres (vital stats part 1)
mvitwaist

Waist measurement in centimetres (vital stats part 2)

111

Schema Reference: Models

vital statistics

mvithips

Hips measurement in centimetres (vital stats part 3)

112

Chapter 15. Schema Reference:
Download

Download: Schema SQL

create table downl oad

(downl oadno nunber (7) primary key,
dnodel no nunber (6) references nodels,
dset no nunber (9) references sets,
dst at us char (1),
dtype char (1),
dsite var char2(20) not null,
dkey var char 2(30),
dset key var char 2(40),
dset nane var char 2(240),
dsetfl ag char (1),
dnot es var char 2(240),
dur | var char 2(240),
dar chi ve var char 2(240),
dsi gnature var char 2(82),
dsi ze nunber (9),
dpul | ed dat e,
dadded dat e,
danended dat e

)
Download: Defined Values

Table 15.1. dstatus: download status: defined values

dstatus

Not Yet Attempted

Failed - Retry when possible

Successful - set registered in database, available

Pending - downloaded, awaiting unpacking

Aborted - don't download for some reason

Deferred - held back from being downl oaded

Relationship Entry - a second model for a set

Liasion - a proto-Relationship Entry not yet linked

m |0 O >»| T|Ww| T C

Error - not the right model, etc

In Progress - download currently in progress

X Incomplete - record of it's existance but too little info to download it

113

Schema Reference: Download

Table 15.2. dtype: download set type: defined values

dtype

I Image Set
\% Video Clip
A Audio File

Table 15.3. dsetflag: Suggested value for scatflag based on parsing result

dsetflag

Note

Any valid value for scatflag from the sets table. Thisis a hint on the set type based upon
the parsing process picking out keywords

114

Chapter 16. Schema Reference:
Photographer

Photographer: Schema SQL

create tabl e photographer

(pref varchar 2(6) primry key,
pnane var char 2(40),
pal i ases var char 2(80),
pgender char (1),
paddr ess var char 2(120),
penai | var char 2(80),
pwebsite var char 2(80),
pusual var char 2(40),
pr egi on var char 2(20),
pcountry var char 2(50),
pl ocati on var char 2(50),
pstyl edesc var char 2(80),
prating nunber (2),
phar dness nunber (2),
psol o char (1),
pt oys char (1),
pl esbi an char (1),
pstrai ght char (1),
pgroup char (1),
pfetish char (1),
pdi git al char (1),
pfilm char (1),
pvi deo char (1),
phdvi deo char (1),
pcamer a var char 2(40),
pcammot es var char 2(80),
pconment s var char 2(240),
pnot es var char 2(240),
pbi ogr aphy var char 2(1024),
padded dat e,
panended dat e

)

Photographer: Defined Values

Table 16.1. pgender: gender of the photographer: defined values

pgender
M Mae
F Female

115

Schema Reference: Photographer

pgender

Unknown

Table 16.2. pregion:

geographical location of the photographer: defined values

pregion
Europe Europe
North America USA and Canada

South America South and Central America

Middle East Middle East (brave photographer!)

Asia Asia (Indiaand the Indian Sub-continent ONLY')
Orient Orient (Asia excluding Indian Sub-continent)
Australasia Australiaand New Zealand

Africa Africa

Other Other

Table 16.3. prating:

overall rating of photographer: defined values

prating

None

Awful - poor equipment and technique

Poor - uninteresting and badly composed/exposed work

Reasonable - technically OK, but very unenterprising

Good - good technique, interesting compositions and direction

g h|{W|N|F| O

Excellent - Excellent technique, interesting and challenging compositions and
direction

Table 16.4. phardness: rating of how explicit this photographer can be: defined

values
phar dness
0 None - Not Rated
1 Soft-focus (very arty)
2 Glamour - sharp but no open leg, genital detail, etc
3 Normal - wide range of shots but not particularly strong
4 Hard (close-ups)
5 Fetish - pretty extreme, gaping, etc

116

Schema Reference: Photographer

Table 16.5. photographer activites cover ed flags. defined values

photographer activities covered flags

fieldname

possible values

psolo

ptoys

pleshian

pstraight

Y - Yes, doesthis; N - No, doesn't do this; O - Occasionally doesthis

pgroup

pfetish

Table 16.6. photographer technologies used flags. defined values

photographer technologies used flags

fieldname possible values
pdigital
pfilm]]
o Y - Yes, usesthistechnology; N - No, doesn't use this technology.
pvideo
phdvideo

117

Chapter 17. Schema Reference: Tag
Tag: Schema SQL

create table tag

(tagno nunber (9) prinmary key,
t nodel no nunber (6) references nodel s,
t set no nunber (9) references sets,
tstatus char (1),
tflag char (1),
t group nunber (6),
t desc var char 2(40),
t owner var char 2(20),
texpiry dat e
t added dat e,
t anended dat e

)

Tag: Defined Values

Table 17.1. tstatus: tag entry status: defined values

tstatus

T Temporary - expire as per expiry rules

Vv Viewed, Temporary - expire as per expiry rules, hide from index
P Permanent - don't expire, show in index

A Archived - don't expire, don't show in normal indexes

Table 17.2. tflag: tag content type status: defined values

tflag
M Model-based tag entry
S Set-based tag entry

118

Chapter 18. Schema Reference: Vendor
Vendor: Schema SQL

create tabl e vendor

(vsite varchar 2(20) primary key,
vnane var char 2(45),
vshort nane varchar 2(20) not null
vregi on var char 2(20),
vcountry var char 2(50),
vwebur | var char 2(120),
vsi gnup var char 2(120),
vrating nunber (2),
vtechrate nunber (2),
vuscdecl var char 2(240),
vcur rent char (1),
vshow char (1),
vsubscri bed char (1),
vunti | dat e,
vuser name var char 2(80),
vpassword var char 2(30),
vidting nunber (2),
vidtvid nunber (2),
vconexcl var char 2(240),
vidi rectory var char 2(240),
vidi ruse char (1),

vidi r pages nunber (3),
vipage var char 2(240),
vipaguse char (1),

vibi o var char 2(240),
vibi ouse char (1),

vnvi deos var char 2(240),
vnvi duse char (1),

vvi dpage var char 2(240),
vvi duse char (1),

Vi mgpage var char 2(240),
Vi mguse char (1),

val t page var char 2(240),
val tuse char (1),
VSrving var char 2(240),
vsrvvid var char 2(240),
vimul ti ng char (1),

vl tvi d char (1),

vnot es var char 2(240),
vadded dat e,

vamended date

119

Schema Reference: Vendor

Vendor: Defined Values

Table 18.1. vcurrent: vendor existance status: defined values

vecurrent
Y Yes- still an active site
N No - no longer trading at that web address

Table 18.2. vshow: vendor index inclusion status; defined values

vshow
Note
This option only really affects vendormode and vendor-based lists of models; if you don't
use vendor mode, it's not likely to be relevant.

Y Yes- show in indices

N No - hide from indices

Table 18.3. vmdiruse et al: vendor URL auto-usuability status: defined values

vmdiruseet al
fieldname page purpose possible values
vmdiruse Model Directory
vmpaguse Model Page
vmb-louse Model Blogra?hy v link iss (autousable
vmviduse Modef's Videos N link i not (auto)usable
Page
- - link usable only
vviduse Video Set Page S with session key
vimguse Image Set Page
valtuse Alternate Image Set
Page

120

Chapter 19. Schema Reference: Conn

Conn: Schema SQL

create table conn

(centryno
cgroup
corder
cfl ag
cstatus
cnodel no
csetno
cphot og
ctype
cdesc
ccomment s
cpath
cadded
camended

)
Conn: Defined Values

Warning

nunmber (9) primary key,
nunber (6),

nunber (3),

char (1),

char (1),

nunber (6) references nodel s,
nunber (9) references sets,
varchar 2(6) references photographer
var char 2(20) not null

var char 2(80),

var char 2(240),

var char 2(160)

dat e,

dat e

Conn (connections) isarecent addition and not all parts of the toolchain arein place yet. As

the management tools are added, it is expected that at least the legal values for fields will

change and be expanded.

Table 19.1. cflag: connection type: defined values

cflag
A Ad-Hoc - A casud index of some random theme
G Gallery - A dlightly more focused collection with a specific concept behind it.

Table 19.2. cstatus: connection entry status: defined values

cstatus
M Manually Added
T Imported from a Tag set

121

Chapter 20. Schema Reference:
Keyword

Keyword: Schema SQL

create tabl e keyword

(kentryno nunber (9) prinary key,
kfl ag char (1),
kwor d varchar (30) not null
kexcl usi ons var char (120),
kil oc var char (20),
ki score nunber (1),
ki cat char (1),
ki cscore nunber (1),
ki det var char (40),
ki dscore nunber (1),
kiattr var char (30),
ki ascore nunber (1),
ki wear var char (40),
ki wscore nunber (1),
ki ot her var char (40),
ki oscore nunber (1),
knot es var char (80),
kadded dat e,
kamended dat e

)

Note

FromWACS0.8.2, the kiother and kioscore fields are used to determine values for the sattire
field inthe sets schema. New fieldskiwear and kiwscore wereintroduced in WACS0.8.5 and
will be used for values for the sattire fields from WACS 0.9.x freeing kiother and kioscore
for their original purpose of being spare for future functionality.

Keyword: Defined Values

Table 20.1. kflag: active entry status: defined values

kflag
A Appliesto All Added
N Not Active (Ignore)

122

Chapter 21. Schema Reference: User
User: Schema SQL

create tabl e user

(userid nunber (9) primary key,
user name varchar 2(20) not null
upassword varchar 2(20) not null
ust at us char (1),
ut ype char (1),
uvisits nunber (6),
ucl ass varchar 2(20) not null
upr excl var char 2(20),
uprdirect char (1),
upr page var char 2(20),
uprscal e var char 2(20),
uprsi ze var char 2(12),
uprquality nunber (3),
upr del ay nunber (3),
uprunits char (1),
uprt hunbs var char 2(20),
upr ot her var char 2(20),
uregi ster dat e,
uexpiry dat e,
ul ast act dat e,
ul ast conn dat e,
ul ast conm dat e,
ul asttopic var char 2(40),
upur ge dat e,
uenai | var char 2(120),
ual t emai | var char 2(120),
uscr eennarmne var char 2(30),
ur eal nane var char 2(80),
uaddressl var char 2(80),
uaddr ess? var char 2(80),
ucity var char 2(50),
uprovi nce var char 2(30),
ucountry var char 2(30),
upost code var char 2(20),
ut el ephone var char 2(30),
ual | owed char (1),
ut hi rdp char (1),
uj oi nthru var char 2(30),
ur ef erence var char 2(120),
upayanount nunber (4, 2),
upaycurr var char 2(10),
ul i nkfrom var char 2(120),
urebill char (1),
uconmpay char (1),
ucomm ssi on var char 2(80),

123

Schema Reference: User

ucommf ee
uconmcur r
uconmmper c

unot es
uadded
uanended date

Note

nunber (4, 2),
var char 2(10),
nunber (3),

var char 2(240),
dat e,

Theuser schemaisanew tableintroduced in WACS 0.8.5; it is not available or supported
prior to that release. Only certain fields of this table are supported and used within
the standard WACS tools; the additional fields are utilised by the WacsPro commercia
site management toolset available seperately from Bevtec Communications Ltd [http:/
www.bevteccom.co.uk/]. To ensure compatibility, the recommended valuesused in all fields
are described here.

User: Defined Values

Table21.1. ustatus: User Account Status; defined values

ustatus

A

Active - thisaccount is currently active

Expired - this user account has expired

Pending - user needs to compl ete verification step

E
p
S

Suspended - access temporarily suspended - |eaked password, etc

Table 21.2. utype: User Type: defined values

utype

F

Friend (or Freebie) - account granted free access

S

Subscriber - a subscription account

Table 21.3. uclass: User Class: defined values

uclass

viewer

anormal user account

power

power user with enhanced rights, can see most of the administration tools but
can't make significant changesto the collection. Primarily intended for support
staff

admin

system and collection administrator - full administrative rights

124

http://www.bevteccom.co.uk/
http://www.bevteccom.co.uk/
http://www.bevteccom.co.uk/

Chapter 22. Schema Reference: Attrib
Attrib: Schema SQL

Note

The attrib schemawas introduced in WACS 0.8.5 but isnot used at all by that release. It will
be used in afuture release.

create table attrib

(atrecno nunber (9) prinary key,
at keyword var char 2(30),
at sour ce char (1),
atrecogni se char (1),
at al | owadd char (1),
at di spl ay char (1),
at shortdesc var char 2(50),
at | ongdesc var char 2(240),
aticon var char 2(160),
at group var char 2(30),
atinplicit char (1),
atval i dset char (1),
at val i dnodel char (1),
at val i dot her char (1),
at mar kset char (1),
at mar knodel char (1),
at mar kot her char (1),
at set sear ch char (1),
at nodsear ch char (1),
at conbsearch char (1),
at ot hsear ch char (1),
at setdetai l char (1),
at noddet ai | char (1),
at conbdet ai | char (1),
at ot hdet ai | char (1),
at not es var char 2(240),
at added dat e,
at anended dat e

)

Attrib: Defined Values

125

Chapter 23. Schema Reference: Notes

Notes: Schema SQL

create table notes

(nentryno
ntype
nor der
ntitle
nt ext
nst at us
nnext
nexpiry
nnmodel no
nset no
nphot og
nconn
ncomrent s
nadded
nanended

)
Notes: Defined Values

nunber (9) primary key,

char (1),

nunber (3),

var char 2(80),

var char 2(2048),

char (1),

nunber (9) references notes,
dat e,

nunber (6) references nodel s,
nunber (9) references sets,
varchar 2(6) references photographers,
nunber (6),

varchar 2(120),

dat e,

dat e

Warning
Notesis abrand new addition as at Wacs 0.8.5 and is not going to be used until at least the

next release of Wacs. It is intended to provide a mechanism for attaching additional text to
models, connections and as abasis for asimple site blog mechanism. All values given below

are subject to change therefore.

Table 23.1. ntype: notestype: defined values

ntype

B Site Blog entry

C Connection Descriptive Text - more about a connection
M Model Biography - an extended biography

dsetflag values, 114
I n d eX dstatus values, 113
dtype values, 114
A Field Listing, 113
dsetflag, 114
addassoc, 93 dstatus, 113
adoheadercss, 61 dtype, 114
addkey| cons, 68 Dynamic Content, 40
Using ..., 37
addlinks, 71 F
zgr_ﬂﬁigg findmodl, 83

findrecentmodels, 85
findrecentsets, 84
find_config_location, 47

alloc_nextkey, 94
alsofeaturing, 72

assoc
astatus values, 105 G
Field Listing, 105
making connections, 30 getgallery, 87
astatus, 105 geticonlist, 55
attrib gettoday, 51
Field Listing, 125 gettypecolour, 56
auth_error, 44 getvaluename, 54
auth get_attr, 49
auth _user, 45 |
iactive, 106
C iconlink, 70
cflag, 121 icons
checkexclude, 58 ~adding set ..., 27
checkindex, 59 idmap
Confiaurati on iactive val ues, 106
Reading The..., 4 isite recommended values, 106
Configuration Values ~istatus values, 106
Getting..., 5 isite, 106
conf_get_attr, 5, 48 istatus, 106
conn
cflag values, 121 K
cstatus values, 121 keyword
Field Listing, 121 Field Listing, 122
Connection kflag values, 122
Database, Initialising..., 4 kflag, 122
cstatus, 121 kwscore_get, 90
kwscore process, 89
D kwscore reset, 88
Data Architecture, 30
Database M
Environment Variables, 5 makedbsafe, 60
Fetching Records..., 7 masthead, 80
Initialising Connection To..., 4 mbuild, 111
dberror, 50 mcstatus, 111
describeher, 65 menu_get_body, 76
WacsUl: Introducing, 35 menu_get_default, 74
divideup, 57 menu_get_entry, 77
download menu_get_handler, 78

127

Index

menu_get _title, 75

mfetish, 110

mflag, 110

mheight, 111

mlesbian, 110

mmast, 110

model heads, 82

model headshot, 86

models
activities values, 110
connection to sets, 30
Field Listing, 108
mbuild values, 111
mcstatus values, 111
mflag values, 110
mpussy values, 110
mrace values, 111
mrating values, 109
mstatus values, 109
vital statisticsfields, 111

modelsel.php, 40

Modules
Importing WACS API, 3

mother, 110

mpussy, 110

mrace, 111

mrating, 109

msolo, 110

mstatus, 109

mstraight, 110

mtoys, 110

mvideos, 110

mvitbust, 111

mvithips, 111

mvitwaist, 111

mweight, 111

MySimple (Sample Program)
Perl Version Source Code, 11
Php Version Source Code, 10
Sample Run Output, 12

MySimple2 (Sample Program)
Sample Run Output, 14

MySimple3 (Sample Program)
Sample Run Output, 17

MySimple4 (Sample Program)
Sample Run Output, 18

MySimpleb (Sample Program)
Sample Run Output, 21

N

notes
Field Listing, 126
ntype values, 126

ntype, 126

P

pdigital, 117

pfetish, 116

pfilm, 117

pgender, 115

pgroup, 116

phardness, 116

phdvideo, 117

photographer
activities covered values, 116
Field Listing, 115
pgender values, 115
phardness values, 116
prating values, 116
pregion values, 116
technologies used values, 117

pleshian, 116

prating, 116

pregion, 116

psolo, 116

pstraight, 116

ptoys, 116

pvideo, 117

R

readable

making Camel-Style ..., 28
read_conf, 42
read_menu, 73
Relational Database Model, 30
removeconflicts, 92
removedups, 91

S

saspect, 104

sauto, 100

scatflag, 102

serrors, 102

SetDisp (Sample Program)
Sample Run Output, 27

setdisp program, 24

SetDisp2 (Sample Program)
Sample Run Output, 28

SetDisp3 (Sample Program)
Sample Run Output, 29

SetDisp4 (Sample Program)
Sample Run Output, 33

setgroupperms, 62

sets
connecting to models, 30
Field Listing, 98

128

Index

introduction to displaying, 24 V
saspect values, 104

sattire recommended values, 103
sauto values, 100

scatflag values, 102

serrors values, 102

sformat values, 101

sidlogo values, 101

sinter, 101

veurrent, 120

vendlink, 53

vendor
Field Listing, 119
veurrent values, 120
vmdiruse values, 120
vshow values, 120

slocation recommended values, 102 vmdiruse, 120
; vshow, 120

srating values, 100

sstatus values, 100

stechqual values, 100 W

stype values, 99 WACS Core

suscattr values, 104 addheadercss, 61

svariety values, 101 add_auth, 46
sformat, 101 alsofeaturing, 72
sidlogo, 101 auth_error, 44
sinter, 101 auth_get_attr, 49
Skins, 39 auth_user, 45
dlocation, 102 checkexclude, 58
SQL checkindex, 59

Simple Example, 6 check_auth, 43
srating, 100 conf_get_attr, 48
sstatus, 100 dberror, 50
stechqual, 100 divideup, 57
Structure of aWACS app, 3 find_config_location, 47
stype, 99 geticonlist, 55
suscattr, 104 gettoday, 51
svariety, 101 gettypecolour, 56

getvaluename, 54
T makedbsafe, 60
read conf, 42

teg setgroupperms, 62

Field Listing, 118

tflag values, 118 timecomps, 52

treemkdir, 63
texistattus values, 118 vendlink, 53
WACS Std
| Camel-Style, 28 addassoc, 93
tf 2, 118 alloc_nextkey, 94
Lmecortes 52 findmodel, 83
treemkdir, 63 findrecentmodels, 85
ttatus, 118 findrecentsets, 84
getgallery, 87
U kwscore get, 90
uclass, 124 kwscore process, 89
user kwscore reset, 88
Field Listing, 123 masthead, 80
uclass values, 124 model heads, 82
ustatus values, 124 model headshot, 86
utype values, 124 removeconflicts, 92
Using relationships, 30 removedups, 91
ustatus, 124 WACSUI
utype, 124 addkeyicons, 68

129

Index

addlinks, 71
addratings, 69
describeher, 65
iconlink, 70
menu_get_body, 76
menu_get_default, 74
menu_get_entry, 77
menu_get _title, 75
read menu, 73
whatshedoes, 67

Wacs-PHP

Skins, 39
Styling The Simple Skin, 40
The Simple Skin, 39

WacsUlI

addkeyicons, 37
describeher, 35

Including Support For..., 35
Introduction To..., 35
menu_get_handler, 78
whatshedoes, 36

Web 2.0, 40
whatshedoes, 67

Using ..., 36

130

